Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-23T08:01:30.412Z Has data issue: false hasContentIssue false

18 - Clinical assessment and therapeutic interventions for hypoxic–ischemic encephalopathy in the full-term infant

from Section 4 - Clinical aspects

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Definition and diagnostic criteria

The term hypoxic–ischemic encephalopathy (HIE) implies a clinically apparent acute disturbance in brain function resulting from a period of critical deprivation of cerebral oxygen delivery and/or blood supply. For the diagnosis of HIE to be upheld there needs to have been obstetric evidence of risk of hypoxia/ischemia to the fetus (e.g., reduced fetal movements, prolapse of the umbilical cord, late decelerations of the fetal heart, fresh meconium, placental abruption, etc.) after which the infant is born in poor condition, with delayed onset of respiration, and is then observed to have cerebral dysfunction (e.g., hypotonia, inability to suck, abnormal posture, clonic movements).

The finding of metabolic acidosis or raised lactate levels in cord blood or blood taken within 30 minutes of birth provides important supporting evidence that there has been acute hypoxia–ischemia at or shortly before delivery. Further support for a global hypoxic–ischemic episode is provided by deranged liver function (raised transaminases), a period of renal impairment with oliguria and raised serum creatinine, cardiac dysfunction, and disseminated intravascular coagulation. The diagnosis of HIE also requires that steps have been taken to rule out other causes of cerebral dysfunction such as infection, preexisting anatomical abnormalities of the brain, or an inherited metabolic disease.

As it is often difficult to be sure if hypoxia–ischemia is the cause of encephalopathy, some authors prefer the term neonatal encephalopathy, which makes no assumptions or exclusions as to etiology.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 281 - 300
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. S., Ahn, H. S., Preziosi, T. J., et al. (1983). Cerebral arterial spasm – a controlled trial of nimodipine in patients with subarachnoid hemorrhage. New England Journal of Medicine, 17, 619–24.CrossRefGoogle Scholar
Altman, D. J., Young, R. S., & Yagel, S. K. (1984). Effects of dexamethasone in hypoxic ischemic brain injury in the neonatal rat. Biology of the Neonate, 46, 149–56.CrossRefGoogle ScholarPubMed
Amiel-Tison, C. (2008). Clinical assessment of the infant nervous system. In Fetal and Neonatal Neurology and Neurosurgery, eds. Levene, M. I. & Chervenak, F.. London: Churchill Livingstone, pp. 128–48.Google Scholar
Amiel-Tison, C. & Ellison, P. (1986) Birth asphyxia in the full term newborn: early assessment and outcome. Developmental Medicine and Child Neurology, 28, 671–82.CrossRefGoogle Scholar
Archer, L. N. J., Levene, M. I., & Evans, D. H. (1986). Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet, 2, 1116–18.CrossRefGoogle ScholarPubMed
Azzopardi, D. V., Strohm, B., Edwards, A. D., et al. (2009). Moderate hypothermia to treat perinatal asphyxial encephalopathy: the TOBY randomized controlled trial. New England Journal of Medicine, 361, 1349–58.CrossRefGoogle Scholar
Barks, J. D., Post, M., & Tuor, D. J. (1991). Dexamethazone prevents hypoxic-ischemic brain damage in the neonatal rat. Pediatric Research, 29, 558–63.CrossRefGoogle Scholar
Benders, M. J. N. L., Bos, A. F., Rademaker, C. M. A., et al. (2006). Early postnatal allopurinol does not improve short term outcome after severe birth asphyxia. Archives of Disease in Childhood Fetal and Neonatal Edition, 91, F163–5.CrossRefGoogle Scholar
Bhat, M. A., Charoo, B. A., Bhat, J. I., et al. (2009). Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics, 123, e764–9.CrossRefGoogle ScholarPubMed
Bifano, E. M. & Pfannenstiel, A. (1988). Duration of hyperventilation and outcome in infants with persistent pulmonary hypertension. Pediatrics, 81, 657–61.Google ScholarPubMed
Bona, E., Hagberg, H., Loberg, E. M., et al. (1998). Protective effects of moderate hypothermia after neonatal hypoxia-ischemia: short and long-term outcome. Pediatric Research, 43, 738–45.CrossRefGoogle ScholarPubMed
Busto, R., Dietrich, W. D., Globus, M. Y. T., et al. (1989). Postischemic moderate hypothermia inhibits CAl hippocampal ischemic neuronal injury. Neuroscience Letters, 101, 299–304, 29.CrossRefGoogle Scholar
Bydder, G. M., Rutherford, M. A., & Cowan, F. M. (2001). Diffusion-weighted imaging in neonates. Childs Nervous System, 17, 190–4.CrossRefGoogle ScholarPubMed
Carroll, M. & Beek, O. (1992). Protection against hippocampal CA1 cell loss by post-ischemic hypothermia is dependent on delay of initiation and duration. Metabolic Brain Disease, 7, 45–50.CrossRefGoogle ScholarPubMed
Cordey, R., Chiolero, R., & Miller, J. (1973). Resuscitation of neonates by hypothermia: report on 20 cases with acid-base determination on 10 cases and the long-term development of 33 cases. Resuscitation, 2, 169–81.CrossRefGoogle ScholarPubMed
Dearden, N. M., Gibson, J. S., McDowall, D. G., et al. (1986). Effect of high dose dexamethazone on outcome from severe head injury. Journal of Neurosurgery, 64, 81–8.CrossRefGoogle Scholar
Delaney-Black, V., Camp, B. W., Lubchenko, L. O., et al. (1989). Neonatal hyperviscosity association with lower achievement and IQ scores at school age. Pediatrics, 83, 662–7.Google ScholarPubMed
Draycott, T., Sibanda, T., Owen, L., et al. (2006). Does training in obstetric emergencies improve neonatal outcome?BJOG: International Journal of Obstetrics and Gynaecology, 113, 177–82.CrossRefGoogle ScholarPubMed
Eicher, D. J., Wagner, C. L., Katikaneni, L. P., et al. (2005). Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatric Neurology, 32, 11–7.CrossRefGoogle ScholarPubMed
Eken, P., Toet, M. C., Groenendal, F., et al. (1995). Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic ischaemic encephalopathy. Archives of Disease in Childhood, 73, F75–80.CrossRefGoogle ScholarPubMed
Evans, D. J., Levene, M. I., & Tsakmakis, M. (2007). Anticonvulsants for preventing mortality and morbidity in full term newborns with perinatal asphyxia. Cochrane Database of Systematic Reviews, 3, CD001240.Google Scholar
Eyre, J. A. & Wilkinson, A. R. (1986). Thiopentone induced coma after severe birth asphyxia. Archives of Disease in Childhood, 61, 1084–9.CrossRefGoogle ScholarPubMed
Eyre, J. A., Oozeer, R. C., & Wilkinson, A. R. (1983). Diagnosis of neonatal seizure by continuous recording and rapid analysis of the electroencephalogram. Archives of Disease in Childhood, 58, 785–90.CrossRefGoogle ScholarPubMed
Fenichel, G. M. (1983). Hypoxic-ischemic encephalopathy in the newborn. Archives of Neurology, 40, 261–6.CrossRefGoogle ScholarPubMed
Finer, N. N., Robertson, C. M., Peters, K. L., et al. (1983). Factors affecting outcome in hypoxic-ischemic encephalopathy in term infants. American Journal of Diseases of Children, 137, 21–25.Google ScholarPubMed
Fishman, R. A. (1982). Steroids in the treatment of brain oedema. New England Journal of Medicine, 306, 359–60.CrossRefGoogle Scholar
Gluckman, P. D., Wyatt, J. S., Azzopardi, D., et al. (2005). Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet, 365, 663–70.CrossRefGoogle ScholarPubMed
Goldberg, R. N., Moscoso, P., Bauer, C. R., et al. (1986). Use of barbiturate therapy in severe perinatal asphyxia: a randomised controlled trial. Journal of Pediatrics, 109, 851–6.CrossRefGoogle Scholar
Goodwin, T. M., Belai, I., Hernandez, P., et al. (1992). Asphyxial complications in the term newborn with severe umbilical acidemia. American Journal of Obstetrics and Gynecology, 167, 1506–12.CrossRefGoogle ScholarPubMed
Gunn, A. J., Gunn, T. R., Haan, H. H., et al. (1997). Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. Journal of Clinical Investigation, 15, 248–56.CrossRefGoogle Scholar
Gunn, A. J., Gunn, T. R., Gunning, M. I., et al. (1998a). Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics, 102, 1098–106.CrossRefGoogle ScholarPubMed
Gunn, A. J., Gluckman, P. G., & Gunn, T. R. (1998b). Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatric Research, 41, 803–8.Google Scholar
Gunn, A. J., Wyatt, J. S., Whitelaw, A., et al. (2008). Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. Journal of Pediatrics, 152, 55–8, 58.e1.CrossRefGoogle ScholarPubMed
Hall, R. T., Hall, F. K., & Daily, D. K. (1998). High dose phenobarbitol therapy in term newborn infants with severe perinatal asphyxia. A randomized prospective study with three year follow-up. Journal of Pediatrics, 132, 345–8.CrossRefGoogle ScholarPubMed
Hattori, H. & Wasterlain, C. G. (1990). Posthypoxic glucose supplement reduces hypoxic ischemic brain damage in the neonatal rat. Annals of Neurology, 28, 122–8.CrossRefGoogle ScholarPubMed
Hellström-Westas, L., Rosen, I., & Svenningsen, N. W. (1995). Predictive value of early continuous amplitude integrated EEG recordings on outcome after severe birth asphyxia in full term infants. Archives of Disease of Childhood, 72, F34–8.CrossRefGoogle ScholarPubMed
Hirtz, D. G. & Nelson, K. (1998). Magnesium sulphate and cerebral palsy in premature infants. Current Opinion in Pediatrics, 10, 131–7.CrossRefGoogle ScholarPubMed
Hobbs, C., Thoresen, M., Tucker, A. M., et al. (in press). Xenon and hypothermia combine additively offering long term functional and histopathological neuroprotection after neonatal hypoxia-ischemia. Stroke.
Howard, E. (1968). Reductions in size and total DNA of cerebrum and cerebellum in adult mice after corticosterone treatment in infancy. Experimental Neurology, 22, 661–73.CrossRefGoogle ScholarPubMed
Huang, C. C., Wang, S. T., Chang, Y. C., et al. (1999). Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischemic encephalopathy. New England Journal of Medicine, 341, 328–35.CrossRefGoogle ScholarPubMed
Ichiba, H., Tamai, H., Negishi, H., et al. (2002). Magnesium Study Group. Randomized controlled trial of magnesium sulfate infusion for severe birth asphyxia. Pediatrics International, 44, 505–9.CrossRefGoogle Scholar
Lee, S. H., Heroes, R. C., Mullan, J. C., et al. (1994). Optimum degree of hemodilution for brain protection in a canine model of focal cerebral ischemia. Journal of Neurosurgery, 80, 469–75.CrossRefGoogle Scholar
Levene, M. I. (1993). Management of the asphyxiated full term infant. Archives of Disease in Childhood, 68, 612–16.CrossRefGoogle ScholarPubMed
Levene, M. I. & Evans, D. H. (1985). Medical management of raised intracranial pressure after severe birth asphyxia. Archives of Disease in Childhood, 60, 12–16.CrossRefGoogle ScholarPubMed
Levene, M. I., Sands, C., Grindulis, H., et al. (1986). Comparison of two methods of predicting outcome in perinatal asphyxia. Lancet, 1, 67–9.CrossRefGoogle ScholarPubMed
Levene, M. I., Evans, D. H., Forde, A., et al. (1987). Value of intracranial pressure monitoring in asphyxiated newborn infants. Developmental Medicine and Child Neurology, 29, 311–19.CrossRefGoogle ScholarPubMed
Levene, M. I., Gibson, N. A., Fenton, A. C., et al. (1990). The use of a calcium channel blocker, nicardipine, for severely asphyxiated newborn infants. Developmental Medicine and Child Neurology, 32, 567–74.CrossRefGoogle ScholarPubMed
Levene, M. I., Blennow, M., Whitelaw, A., et al. (1995). Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Archives of Disease in Childhood, 73, F174–7.CrossRefGoogle ScholarPubMed
Low, J. A., Ga1braith, R. S., Muir, D. W., et al. (1988). Motor and cognitive deficiency after intrapartum asphyxia in the mature fetus. American Journal of Obstetrics and Gynecology, 158, 356–61.CrossRefGoogle Scholar
Marchal, C., Costagliola, P., Leveau, P., et al. (1974). Traitement de la souffrance cerebrale neonatale d' origine anoxique par le mannitol. Revue de Pediatrie, 9, 581–9.Google Scholar
McDonald, J. W., Silverstein, F. S., & Johnston, M. V. (1990). Magnesium reduces N-methyl d-aspartate (NMDA)-mediated brain injury in perinatal rats. Neuroscience Letters, 109, 234–8.CrossRefGoogle ScholarPubMed
Miller, J., Miller, F., & Westin, B. (1964). Hypothermia in the treatment of asphyxia neonatorum. Biology of the Neonate, 6, 148–63.CrossRefGoogle ScholarPubMed
Mujsce, D. J., Towfighi, J., Stern, D., et al. (1990). Mannitol therapy in perinatal hypoxic-ischemic brain damage in rats. Stroke, 21, 1210–14.CrossRefGoogle ScholarPubMed
Palmer, C., Vannuci, R. C., & Towfighi, J. (1990). Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatric Research, 27, 332–6.CrossRefGoogle ScholarPubMed
Robertson, C. & Finer, N. (1985). Term infants with hypoxic-ischaemic encephalopathy: outcome at 3.5 years. Developmental Medicine and Child Neurology, 27, 473–84.33.CrossRefGoogle ScholarPubMed
Roine, R. O., Caste, M., Kineme, A., et al. (1990). Nimodipine after resuscitation from out-of-hospital ventricular fibrillation. JAMA: The Journal of American Medical Association, 264, 3171–7.CrossRefGoogle ScholarPubMed
Rootwelt, T., Almaas, R., Oyasaeter, S., et al. (1995). Release of xanthine oxidase to the systemic circulation during resuscitation from severe hypoxemia in newborn pigs. Acta Paediatrica, 84, 507–11.CrossRefGoogle ScholarPubMed
Ruth, V., Korkman, M., Liikanen, A., et al. (1991). High-dose phenobarbitol treatment to prevent post asphyxial brain damage: a 6 year follow-up. Pediatric Research, 30, 638 [abstract].CrossRefGoogle Scholar
Rutherford, M. A., Pennock, J. M., & Counsell, S. J. (1998). Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischaemic encephalopathy. Archives of Disease in Childhood, 102, 323–8.Google Scholar
Rutherford, M., Azzopardi, D., Whitelaw, A., et al. (2005). Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischaemic encephalopathy. Pediatrics, 116, 1001–6.CrossRefGoogle Scholar
Sarnat, H. S. & Sarnat, M. S. (1976). Neonatal Encephalopathy following fetal distress. Archives of Neurology, 33, 696–706.CrossRefGoogle ScholarPubMed
Saugstad, O. D. (1996). Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics, 98, 103–7.Google ScholarPubMed
Saugstad, O. D. (2005). Room air resuscitation – two decades of neonatal research. Early Human Development, 81, 111–16.CrossRefGoogle ScholarPubMed
Scott, H. (1976). Outcome of very severe birth asphyxia. Archives of Disease in Childhood, 51, 712–16.CrossRefGoogle ScholarPubMed
Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., et al. (2005). Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. New England Journal of Medicine, 353, 1574–84.CrossRefGoogle ScholarPubMed
Shinwell, E. S., Karplus, M., Reich, D., et al. (2000). Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Archives of Disease in Childhood Fetal and Neonatal Edition, 83, F177–81.CrossRefGoogle ScholarPubMed
Silverman, W. A., Fertig, J. W., & Berger, A. P. (1958). The influence of the thermal environment upon the survival of newly born premature infants. Pediatrics, 22, 876–86.Google ScholarPubMed
Sirimanne, E. S., Blumberg, R. M., Bossano, D., et al. (1996). The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat. Pediatric Research, 39, 5917.CrossRefGoogle ScholarPubMed
So, K. W., Fok, T. F., Ng, P. C., et al. (1997). Randomised controlled trial of colloid or crystalloid in hypotensive preterm infants. Archives of Disease in Childhood, F76, F43–6.CrossRefGoogle Scholar
Soderfeldt, B., Fujikawa, D. G., & Wasterlain, E. G. (1990). Neuropathology of status epilepticus in the neonatal marmoset monkey. In Neonatal Seizures, eds. Wasterlain, C. G. & Vert, P.. New York: Raven Press, pp. 91–112.Google Scholar
Steen, P. A., Newberg, L. A., Milde, J. H., et al. (1983). Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischaemia in the dog. Journal of Cerebral Blood Flow and Metabolism, 3, 38–43.CrossRefGoogle ScholarPubMed
Svenningsen, N. W., Blennow, G., Lindroth, M., et al. (1982). Brain-oriented intensive care treatment in severe perinatal asphyxia. Archives of Disease in Childhood, 57, 176–83.CrossRefGoogle Scholar
Thompson, C. M., Puterman, A. S., Linley, L. L., et al. (1997). The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatrica, 86, 757–61.CrossRefGoogle ScholarPubMed
Thordstein, M., Bagenholm, R., Thiringer, K., et al. (1993). Scavengers of free oxygen radicals in combination with magnesium ameliorate perinatal hypoxic-ischemic brain damage in the rat. Pediatric Research, 34, 23–6.CrossRefGoogle ScholarPubMed
Thoresen, M. & Whitelaw, A. (2000). Cardiovascular changes during mild therapeutic hypothermia and rewarming in infants with hypoxic-ischemic encephalopathy. Pediatrics, 106, 92–9.CrossRefGoogle ScholarPubMed
Thoresen, M., Penrice, J., Lorek, A., et al. (1995). Mild hypothermia following severe transient hypoxia-ischemia ameliorates delayed (secondary) cerebral energy failure in the newborn piglet. Pediatric Research, 37, 667–70.CrossRefGoogle Scholar
Thoresen, M., Haaland, K., Loberg, E. M., et al. (1996a). A piglet survival model of post hypoxic encephalopathy. Pediatric Research, 40, 738–48.CrossRefGoogle Scholar
Thoresen, M., Bågenholm, R., Løberg, E. M., et al. (1996b). Posthypoxic cooling of neonatal rats provides protection against brain injury. Archives of Disease in Childhood Fetal and Neonatal Edition, 74, F3–9.CrossRefGoogle ScholarPubMed
Thoresen, M., Hallstrom, A., Whitelaw, A., et al. (1998). Lactate and pyruvate changes in the cerebral gray and white matter during posthypoxic seizures in newborn pigs. Pediatric Research, 44, 746–54.CrossRefGoogle ScholarPubMed
Thoresen, M., Satas, S., Løberg, E. M., et al. (2001). Twenty-four hours of mild hypothermia in unsedated newborn pigs starting after a severe global hypoxic-ischemic insult is not neuroprotective. Pediatric Research, 50, 405–11.CrossRefGoogle Scholar
Thoresen, M., Stone, J., Hoem, N. O., et al. (2003). Hypothermia after perinatal asphyxia more than doubles the plasma half-life of Phenobarbitone. Pediatric Research, 53, 24A.Google Scholar
Toet, M. C., Hellström-Westas, L., Groenendaal, F., et al. (1999). Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Archives of Disease in Childhood Fetal and Neonatal Edition, 81, F19–23.CrossRefGoogle ScholarPubMed
Tooley, J. R., Satas, S., Porter, H., et al. (2003). Head cooling with mild systemic hypothermia in anesthetized piglets is neuroprotective. Annals of Neurology, 53, 65–72.CrossRefGoogle ScholarPubMed
Vaagenes, P., Cantadore, R., Safar, P., et al. (1984). Amelioration of brain damage by lidoflazine after prolonged ventricular fibrillation in cardiac arrest in dogs. Critical Care Medicine, 12, 846–55.CrossRefGoogle ScholarPubMed
Bel, F., Shadid, M., Moison, R. M., et al. (1998). Effect of allopurinol on post asphyxial free radical formation, cerebral hemodynamics and electrical brain activity. Pediatrics, 101, 185–93.Google Scholar
Versmold, H. T., Kitterman, J. A., Phibbs, R. H., et al. (1981). Aortic blood pressure during the first 12 hours of life in infants with birth weight 610 to 4,220 grams. Pediatrics, 67, 607–13.Google Scholar
Volpe, J. J. (2001). Neurology of the Newborn, 4th edn. Philadelphia, PA: Saunders.Google Scholar
Westin, B., Miller, J., Nyberg, R., et al. (1959). Neonatal asphyxia pallida treated with hypothermia alone or with hypothermia and transfusion of oxygenated blood. Surgery, 45, 868–79.Google ScholarPubMed
Whitelaw, A. (1986). Death as an option in neonatal intensive care. Lancet, 2, 328–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×