Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T19:53:07.171Z Has data issue: false hasContentIssue false

20 - Embrace Complexity! Multiple Factors Contributing to Cognitive, Social, and Communicative Development

from Part III - Language and Communicative Development

Published online by Cambridge University Press:  11 May 2017

Nancy Budwig
Affiliation:
Clark University, Massachusetts
Elliot Turiel
Affiliation:
University of California, Berkeley
Philip David Zelazo
Affiliation:
University of Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C., Ranpura, A., & Butterworth, B. (2010). Time and numerosity estimation are independent: Behavioral evidence for two different systems using a conflict paradigm. Cognitive Neuroscience, 1(2), 96101.Google Scholar
Alcock, K. J., & Krawczyk, K. (2010). Individual differences in language development: Relationship with motor skills at 21 months. Developmental Science, 13(5), 677691. doi: 10.1111/j.1467-7687.2009.00924.xGoogle Scholar
Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In Pauen, S. (Ed.) Early childhood development and later outcome (pp. 3365). Cambridge, UK: Cambridge University Press.Google Scholar
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 3746.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., & Williams, S. C. (1999). Social intelligence in the normal and autistic brain: an fMRI study. European Journal of Neuroscience, 11(6), 18911898.Google Scholar
Bates, E., Elman, J., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1998). Innateness and emergentism. In Bechtel, W. and Graham, G. (Eds.). A companion to cognitive science (pp. 590601). Oxford: Basil Blackwell.Google Scholar
Bates, E. & Roe, K. (2001). Language development in children with unilateral brain injury. In Nelson, C. A. & Luciana, M. (Eds.). Handbook of developmental cognitive neuroscience (pp. 281307). Cambridge, MA: MIT Press.Google Scholar
Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., & Hensch, T. K. (2010). Removing brakes on adult plasticity: from molecular to behavioural interventions. Journal of Neuroscience. 30(45), 1496414971.Google Scholar
Bolhuis, J. J., Brown, G. R, Richardson, R. C, & Laland, K. N. (2011). Darwin in mind: New opportunities for evolutionary psychology. PLoS Biology, 9 (7), 18.Google Scholar
Brownman, C. & Goldstein, L. (1995). Dynamics and articulatory phonology. In Port, R. & Van Gelder, T. (Eds.). Mind as motion: Explorations in the dynamics of cognition (pp. 175–193). Cambridge, MA: MIT Press.Google Scholar
Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
Butterworth, B. (2008). State-of-science review: Dyscalculia. In Goswami, U. C. (Ed.) Foresight mental capital and mental wellbeing. London: Office of Science and Innovation.Google Scholar
Cardoso-Martins, C., & Mervis, C. B. (1985). Maternal speech to prelinguistic children with Down syndrome. American Journal of Mental Deficiency, 89, 451458.Google Scholar
Carey, S. (2011). The Origin of Concepts: A précis. Behavioral and Brain Sciences, 34, 113167.Google Scholar
Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241257.CrossRefGoogle ScholarPubMed
Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain. What have we learned about cognitive development? Trends in Cognitive Science, 9(3), 104110.CrossRefGoogle ScholarPubMed
Castle, A., & Coltheart, M. (1993). Varieties of developmental dyslexia. Cognition 47(2), 149180.Google Scholar
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Developmental Psychopathology, 6, 533549.Google Scholar
Clahsen, H., & Temple, C. (2003). Words and rules in children with Williams syndrome. In Levy, Y. & Schaeffer, J. (Eds.). Language competence across populations (pp. 323352). Mahwah, NJ: Erlbaum.Google Scholar
Coady, J. A., & Evans, J. L. (2008). Uses and interpretations of non-word repetition tasks in children with and without specific language impairments (SLI). International Journal of Language and Communicative Disorders. 43(1), 140.Google Scholar
Cohen Kadosh, K., Henson, R., Cohen Kadosh, R., Johnson, M. H., & Dick, F. (2009). Task-dependent activation of face-sensitive cortex: an fMRI adaptation study. Journal of Cognitive Neuroscience, 22(5), 903917.CrossRefGoogle Scholar
Cohen Kadosh, R., Bahrami, B., Walsh, V., Butterworth, B., Popescu, T., & Price, C. J. (2011). Specialization in the human brain: The case of numbers. Frontiers of Human Neuroscience 5: 62. doi: 10.3389/fnhum.2011.00062Google Scholar
Cosmides, L., Barrett, H. C., & Tooby, J. (2010). Adaptive specializations, social exchange, and the evolution of human intelligence. Proceedings of the National Academy of Science, 107, 90079014.Google Scholar
De Haan, M., Humphreys, K., & Johnson, M. H. (2002). Developing a brain specialized for face processing: A converging methods approach. Developmental Psychobiology, 40(3), 200212.Google Scholar
Dehaene, S. (1997). The number sense: how the mind creates mathematics. Oxford: Oxford University Press.Google Scholar
Dehaene, S., Charles, L., King, J. R., & Marti, S. (2014). Toward a computational theory of conscious processing. Current Opinion in Neurobiology, 25, 7684.Google Scholar
Dehaene, S & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron 56(2), 384398.CrossRefGoogle ScholarPubMed
Duchaine, B. (2000). Developmental propagnosia with normal configural processing. NeuroReport, 11(1), 7983.Google Scholar
Duchaine, B, Cosmides, L., & Tooby, J. (2001). Evolutionary psychology and the brain. Current Opinion in Neurobiology, 11(1), 7983.Google Scholar
Duchaine, B., & Nakayama, K. (2005). Dissociations of face and object recognition in developmental prosopagnosia. Journal of Cognitive Neuroscience 17, 249261.CrossRefGoogle ScholarPubMed
Duchaine, B. & Nakayama, K. (2006). Developmental prosopagnosia: A window to content-specific face processing. Current Opinion in Neurobiology, 16(2), 166173.Google Scholar
Duchaine, B., Nieminen-von Wendt, T., New, J., & Kulomaki, T. (2003). Dissociations of visual recognition in a developmental agnosic: Evidence for separate developmental processes. Neurocase, 9, 380389.Google Scholar
Duchaine, B., Yovel, G., Butterworth, E., & Nakayama, K. (2006). Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative explanations in a developmental case. Cognitive Neuropsychology, 23, 714747.Google Scholar
Durston, S., Davidson, M. C., Tottenham, N., Galvan, A., Spicer, J., Fossella, J. A., & Casey, B. J. (2006). A shift from diffuse to focal cortical activity with development. Developmental Science, 9(1), 18.Google Scholar
Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, Mass: MIT Press.Google Scholar
Elsabbagh, M., Hohenberger, A., Herwegen, J., Campos, R., Serres, J., de Schoenen, S., Aschersleben, G., & Karmiloff-Smith, A. (2013). Narrowing perceptual sensitivity to the native language in infancy: Exogenous influences on developmental timing. Behavioral Sciences, 3(1),120132.Google Scholar
Finlay, B. L. (2007). E pluribus unum: Too many unique human capacities and too many theories. In Gangestad, S. and Simpson, J. (Eds.). The evolution of mind: Fundamental questions and controversies (pp. 294304). New York, NY: Guilford Press.Google Scholar
Fodor, J. (1983). Modularity of mind. Cambridge, MA: MIT Press.Google Scholar
Foster, R., & Kreitzman, L. (2010). The rhythms of life: The biological clocks that control the daily lives of every living thing. London: Profile.Google Scholar
Gelman, R., & Gallistel, R. (1986). The child’s understanding of number. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Gervain, J. & Mehler, J. (2010). Speech perception and language acquisition in the first year of life. Annual Review of Psychology, 61, 191218. doi: 10.1146/annurev.psych.093008.100408.Google Scholar
Ghazanfar, A. A., Takahashi, D. Y., Mathur, N. A., & Fitch, W. T. (2012). Cineradiography of monkey lipsmacking reveals putative origins of speech dynamics. Current Biology, 22, 11761182.CrossRefGoogle Scholar
Giedd, J., Blumenthal, J., Jeffries, N., Castellanos, F., Liu, H., & Zijdenbos, A. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861863.Google Scholar
Giedd, J., Rumsey, J., Castellanos, F., Rajapakse, J., Kaysen, D., & Vaituzis, A. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Developmental Brain Research, 91, 274280.Google Scholar
Gomez, R., Bootzin, R. R., & Nadel, L. (2006). Naps promote abstraction in language-learning infants. Psychological Science, 17, 670674.CrossRefGoogle ScholarPubMed
Gopnik, M. (1990). Genetic basis of grammar defect. Nature, 347(6288), 26.Google Scholar
Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 111.Google Scholar
Hauser, M. D., & Spelke, E. S. (2004). Evolutionary and developmental foundations of human knowledge: A case study of mathematics. In Gazzaniga, M (Ed.) The Cognitive Neurosciences, Vol. 3, pp. 853864. Cambridge: MIT Press.Google Scholar
Hensch, T. K. (2005). Critical period plasticity in local cortical circuits. Nature Reviews Neuroscience, 6, 877888.Google Scholar
Hepper, P. G., Scott, D., & Shahidullah, B. S. (1993). Newborn and fetal response to maternal voice. Journal of Reproductive and Infant Psychology, 11, 147153.Google Scholar
Horváth, K., Myers, K., Foster, R., & Plunkett, K. (2015). Napping facilitates word learning in early lexical development. Journal of Sleep Research, 24(5), 503509. doi: 10.1111/jsr.12306Google Scholar
Hupbach, A., Gomez, R. L., Bootzin, R. R., & Nadel, L. (2009). Nap-dependent learning in infants. Psychological Science, 12(6), 10071012. doi: 10.1111/j.1467-7687.2009.00837.xGoogle ScholarPubMed
Huttenlocher, P. R., & de Courten, C. (1987) The development of synapses in striate cortex of man. Human Neurobiology, 6, 19.Google Scholar
Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.Google Scholar
Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number processing in human infants: Evidence for two core systems underlying numerical cognition. Developmental Science, 14(2), 360371.Google Scholar
Iverson, J. M. (2010). Developing language in a developing body: The relationship between motor development and language development. Journal of Child Language, 37(02), 229261.CrossRefGoogle Scholar
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.Google Scholar
Kaffman, A., & Meaney, M. J. (2007). Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights. Journal of Child Psychology and Psychiatry 48, 224244.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, Mass: MIT Press/Bradford Books.Google Scholar
Karmiloff-Smith, A. (1994). Transforming a partially structured brain into a creative mind. Behavioral Brain Sciences, 17(4), 732745.Google Scholar
Karmiloff-Smith, A. (1998). Development itself is the key to understanding developmental disorders. Trends in Cognitive Science, 2(10), 389398.Google Scholar
Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Interplay of Biology and Environment, Developmental Psychology, 45(1), 5663.Google Scholar
Karmiloff-Smith, A. (2010). Neuroimaging of the developing brain: Taking “developing” seriously. Human Brain Map, 31(6), 934941.Google Scholar
Karmiloff-Smith, A. (2012). Brain: The neuroconstructivist approach. In Farran, E. K. & Karmiloff-Smith, A. (Eds.). Neuro-developmental disorders across the lifespan: A neuroconstructivist approach (pp. 3758). Oxford: Oxford University Press.Google Scholar
Karmiloff-Smith, A. (2013). Challenging the use of adult neuropsychological models for explaining neurodevelopmental disorders: Developed versus developing brains. Quarterly Journal of Experimental Psychology, 66, 114.Google Scholar
Karmiloff-Smith, A., Aschersleben, G., de Schonen, T., Elsabbagh, M., Hohenberger, A., & Serres, J. (2010). Constraints on the timing of infant cognitive change: Domain-specific or domain-general? European Journal of Developmental Science, 4(1), 3145.Google Scholar
Karmiloff-Smith, A., Plunkett, K., Johnson, M., Elman, J. L., & Bates, E. (1998). What does it mean to claim that something is “innate”? Mind and Language, 13(4), 588597.Google Scholar
Karmiloff-Smith, A., & Thomas, M. S. C. (2005). Can developmental disorders be used to bolster claims from Evolutionary Psychology? A neuroconstructivist approach. In Taylor Parker, S., Langer, J., and Milbrath, C. (Eds.). Biology and knowledge revisited: From neurogenesis to psychogenesis (pp. 307322), Mahwah, NJ: Lawrence Erlbaum Press.Google Scholar
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistic learning in infancy: evidence for a domain-general learning mechanism. Cognition, 83, B35B42.Google Scholar
Krishnan, S., Alcock, K. J., Mercure, E., Leech, R., Barker, E., Karmiloff-Smith, A., & Dick, F. J. (2013). Articulating novel words: children’s oromotor skills predict nonword repetition abilities. Speech Language and Hearing Research, 56(6), 18001812. doi: 10.1044/1092-4388 (2013/12–0206)Google Scholar
Krishnan, S., Bergström, L., Alcock, K. J., Dick, F., & Karmiloff-Smith, A. (2015). Williams syndrome: a surprising deficit in oromotor praxis in a population with proficient language production. Neuropsychologia. 67, 8290. doi: 10.1016/j.neuropsychologia.2014.11.032. Epub 2014 Nov 27.Google Scholar
Krishnan, S., Leech, R., Mercure, E., Lloyd-Fox, S. O., & Dick, F. (2014). Convergent and divergent fMRI responses in children and adults to increasing language production demands. Cerebral Cortex, 23(9), 22612268. doi: 10.1093/cercor/bhs213Google Scholar
Landau, B., Hoffman, J. E., & Kurz, N. (2005). Object definitions with severe spatial deficits in Williams syndrome: sparing and breakdown. Cognition 100, 483510.Google Scholar
Lany, J., & Saffran, J. R. (2013). Statistical learning mechanisms in infancy. In Rubenstein, J. L. & Rakic, P., (Eds). Comprehensive developmental neuroscience: Neural circuit development and function in the brain, Vol. 3 (pp. 231248). Amsterdam: Elsevier.Google Scholar
Lee, S. A., & Spelke, E. S. (2010). A modular geometric mechanism for reorientation in children. Cognitive Psychology 61(2), 152176.Google Scholar
Leslie, A. M. (1992). Pretense, autism, and the theory-of-mind-module. Current Directions in Psychological Science, 1, 1821.Google Scholar
Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M., Thomas, M. S. C., & Westermann, G. (2007) Neuroconstructivism: Vol. I. How the brain constructs cognition. Oxford, England: Oxford University Press.Google Scholar
Mills, D. L., Coffy-Corins, S., & Neville, H. (1997). Language comprehension and cerebral specialisation from 13–20 months. Developmental Psychology, 13, 397445.Google Scholar
Minagawa-Kawai, Y., Mori, K., Naoi, N., & Kojima, S. (2007). Neural attunement processes in infants during the acquisition of language-specific phonemic contrasts. Journal of Neuroscience, 3, 315321.Google Scholar
Molko, N., Cachia, A., Rivière, D., Mangin, J.-F., Bruandet, M., Le Bihan, D., Cohen, L., & Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847858.Google Scholar
Moon, C., & Fifer, W. P. (2000) Evidence of transnatal auditory learning. Journal of Perinatology, 20, S37S44.Google Scholar
Neville, H., Mills, D., & Bellugi, U. (1994). Effects of altered auditory sensitivity and age of language acquisition on the development of language-relevant neural systems: Preliminary studies of William syndrome. In Broman, S. and Grafman, J. (Eds.). Atypical cognitive deficits in developmental disorders: Implications for brain function (pp. 6783). Hillsdale, NJ: Erlbaum.Google Scholar
Paterson, S. J., Brown, J. H., Gsödl, M. K., Johnson, M. H., & Karmiloff-Smith, A. (1999). Cognitive modularity and genetic disorders, Science, 286, 23552358.Google Scholar
Paterson, S. J., Heim, S., Friedman, J. T., Choudhury, N., & Benasich, A. A. (2006). Development of structure and function in the infant brain: Implications for cognition, language and social behaviour. Neuroscience Biobehavior Review, 30: 10871105.Google Scholar
Piattelli-Palmarini, M. (2001). Speaking of learning: How do we acquire our marvellous facility for expressing ourselves in words? Nature, 411, 887888.Google Scholar
Pinker, S. (2002). The blank slate. The modern denial of human nature. New York, NY: Penguin Group.Google Scholar
Quartz, S., & Sejnowski, T. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral Brain Sciences 20, 537596.CrossRefGoogle ScholarPubMed
Rice, M. (1999). Specific grammatical limitations in children with Specific Language Impairment. In Tager-Flusberg, H. (Ed.). Neurodevelopmental disorders (pp. 331360). Cambridge, MA: MIT Press.Google Scholar
Scerif, G., & Karmiloff-Smith, A. (2001). Genes and environment: What does interaction really mean? Trends in Genetics, 17, 418419.Google Scholar
Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: a prospective six-year follow-up. Developmental Medicine and Child Neurology, 2, 121125.Google Scholar
Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Science, 7(8), 343348.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2009). Innateness, learning and rationality. Child Development Perspectives 3, 9698.Google Scholar
Stiles, J. (2009). The fundamentals of brain development. Cambridge, MA: Harvard University Press.Google Scholar
Stiles, J. (2012). Neural plasticity and cognitive development: Insights from children with perinatal brain injury. Oxford, UK: Oxford University Press.Google Scholar
Sur, M., Pallas, S. L., & Roe, A. W. (1990). Crossmodal plasticity in cortical development: Differentiation and specification of sensory neocortex. TINS, 13, 227233.Google Scholar
Temple, C. M. (1997). Cognitive neuropsychology and its application to children. Journal of Child Psychology and Psychiatry 38, 2752.Google Scholar
Thomas, M. S. C., Knowland, V. C., & Karmiloff-Smith, A. (2011). Mechanisms of developmental regression in autism and the broader phenotype: a neural network modeling approach. Psychological Review, 118(4), 637654.Google Scholar
Tomalski, P., Moore, D. G., Ribeiro, H., Axelsson, E. L., Murphy, E., Karmiloff-Smith, A., & Kushnerenko, E. (2013). Socioeconomic status and functional brain development – Associations in early infancy. Developmental Science, 16, 676687.Google Scholar
Tyler, L. K., Shafto, M. A., Randall, B., Wright, P., Marslen-Wilson, W. D., & Stamatakis, E. A. (2010). Preserving syntactic processing across the adult life span: The modulation of the frontotemporal language system in the context of age-related atrophy. Cerebral Cortex, 20(2), 352364.Google Scholar
van der Lely, H. K. J. (2005). Domain-specific cognitive systems: Insight from grammatical specific language impairment. Trends in Cognitive Science, 9, 5359.Google Scholar
van der Lely, H. K. J., & Pinker, S. (2014). The biological basis of language: Insights from developmental grammatical impairments. Trends in Cognitive Science, 18(11), 586595.Google Scholar
Webster, M. J., Bachevalier, J., & Ungerleider, L. G. (1995). Development and plasticity of visual memory circuits. In Julesz, B. & Kovacs, I. (Eds.). Maturational windows and adult cortical plasticity in human development: Is there reason for an optimistic view? Reading, MA: Addison-Wesley.Google Scholar
Weir, R. (1962). Language in the crib. The Hague: Mouton.Google Scholar
Westermann, G., Mareschal, D., Johnson, M. H., Sirois, S., Spratling, M. W., & Thomas, M. S. C. (2007). Neuroconstructivism. Developmental Science, 10(1), 7583.Google Scholar
Westermann, G., Thomas, M. S. C., & Karmiloff-Smith, A. (2010). Neuroconstructivism. In Goswami, U. (Ed.). Handbook of childhood development, (pp. 723748). Oxford: Wiley-Blackwell.Google Scholar
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88101.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×