Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-08T14:02:32.943Z Has data issue: false hasContentIssue false

Chapter 31 - Brain Mapping

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Maximizing extent of resection while minimizing neurological morbidity is a key tenet of glioma and epilepsy surgery. Numerous intraoperative and preoperative techniques exist to assess functional domains including motor and language. In this chapter, we describe the primary methods used to map brain function, with a focus on highlighting the neuroscience principles behind common language tasks used for language mapping.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, TJ, Rhone, AE, Nourski, KV, et al. Direct physiologic evidence of a heteromodal convergence region for proper naming in human left anterior temporal lobe. J Neurosci 2015;35:1513–20. https://doi.org/10.1523/JNEUROSCI.3387-14.2015.Google Scholar
Anderson, JM, Gilmore, R, Roper, S, et al. Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke–Geschwind model. Brain Lang 1999;70:112. https://doi.org/10.1006/brln.1999.2135.Google Scholar
Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 2017;20:327–39. https://doi.org/10.1038/nn.4504.Google Scholar
Baldo, JV, Katseff, S, Dronkers, NF. Brain regions underlying repetition and auditory-verbal short-term memory deficits in aphasia: evidence from voxel-based lesion symptom mapping. Aphasiology 2012;26:338–54. https://doi.org/10.1080/02687038.2011.602391.CrossRefGoogle ScholarPubMed
Bartolomei, F, Bosma, I, Klein, M, et al. How do brain tumors alter functional connectivity? A magnetoencephalography study. Ann Neurol 2006a;59:128–38. https://doi.org/10.1002/ana.20710.Google Scholar
Bartolomei, F, Bosma, I, Klein, M, et al. Disturbed functional connectivity in brain tumour patients: evaluation by graph analysis of synchronization matrices. Clin Neurophysiol 2006b;117:2039–49. https://doi.org/10.1016/j.clinph.2006.05.018.Google Scholar
Beaulieu, C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002;15:435–55. https://doi.org/10.1002/nbm.782.Google Scholar
Beauvois, MF, Dérouesné, J. Phonological alexia: three dissociations. J Neurol Neurosurg Psychiatry 1979;42:1115–24. https://doi.org/10.1136/jnnp.42.12.1115.CrossRefGoogle ScholarPubMed
Bello, L, Gallucci, M, Fava, M, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery 2007;60:6780; discussion 80. https://doi.org/10.1227/01.NEU.0000249206.58601.DE.Google Scholar
Bello, L, Riva, M, Fava, E, et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol 2014;16:1110–28. https://doi.org/10.1093/neuonc/not327Google Scholar
Benzagmout, M, Gatignol, P, Duffau, H. Resection of World Health Organization Grade II gliomas involving Broca’s area: methodological and functional considerations. Neurosurgery 2007;61:741–52; discussion 752. https://doi.org/10.1227/01.NEU.0000298902.69473.77.Google Scholar
Biswal, B, Zerrin Yetkin, F, Haughton, VM, Hyde, JS. Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magn Reson Med 1995;34:537–41. https://doi.org/10.1002/mrm.1910340409.Google Scholar
Bosma, I, Douw, L, Bartolomei, F, et al. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: a magnetoencephalography study. Neuro Oncol 2008a;10:734–44. https://doi.org/10.1215/15228517-2008-034Google Scholar
Bosma, I, Stam, CJ, Douw, L, et al. The influence of low-grade glioma on resting state oscillatory brain activity: a magnetoencephalography study. J Neurooncol 2008b;88:7785. https://doi.org/10.1007/s11060-008-9535-3.Google Scholar
Buchsbaum, BR, Baldo, J, Okada, K, et al. Conduction aphasia, sensory-motor integration, and phonological short-term memory – an aggregate analysis of lesion and fMRI data. Brain Lang 2011;119:119–28. https://doi.org/10.1016/j.bandl.2010.12.001.CrossRefGoogle ScholarPubMed
Cannestra, AF, Bookheimer, SY, Pouratian, N, et al. Temporal and topographical characterization of language cortices using intraoperative optical intrinsic signals. Neuroimage 2000;12:4154. https://doi.org/10.1006/nimg.2000.0597.Google Scholar
Cannestra, AF, Pouratian, N, Forage, J, Bookheimer, SY, Martin, NA, Toga, AW. Functional magnetic resonance imaging and optical imaging for dominant-hemisphere perisylvian arteriovenous malformations. Neurosurgery 2004;55:804–12; discussion 812. https://doi.org/10.1227/01.neu.0000137654.27826.71.Google Scholar
Catani, M, Jones, DK, ffytche, DH. Perisylvian language networks of the human brain. Ann Neurol 2005;57:816. https://doi.org/10.1002/ana.20319.Google Scholar
Choudhri, AF, Whitehead, MT, Klimo, P, Montgomery, BK, Boop, FA. Diffusion tensor imaging to guide surgical planning in intramedullary spinal cord tumors in children. Neuroradiology 2014;56:169–74. https://doi.org/10.1007/s00234-013-1316-9.Google Scholar
Cohen, L, Dehaene, S, Naccache, L, et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 2000;123:291307. https://doi.org/10.1093/brain/123.2.291.Google Scholar
Coltheart, M, Rastle, K, Perry, C, Langdon, R, Ziegler, J. DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol Rev 2001;108:204–56. https://doi.org/10.1037/0033-295x.108.1.204.Google Scholar
Cordes, D, Haughton, VM, Arfanakis, K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 2000;21:1636–44.Google Scholar
Corina, DP, Loudermilk, BC, Detwiler, L, Martin, RF, Brinkley, JF, Ojemann, G. Analysis of naming errors during cortical stimulation mapping: implications for models of language representation. Brain Lang 2010;115:101–12. https://doi.org/10.1016/j.bandl.2010.04.001.Google Scholar
Damasio, AR, Damasio, H. The anatomic basis of pure alexia. Neurology 1983;33:1573. https://doi.org/10.1212/wnl.33.12.1573.Google Scholar
Damasio, H, Damasio, AR. The anatomical basis of conduction aphasia. Brain 1980;103:337–50. https://doi.org/10.1093/brain/103.2.337.Google Scholar
De Witt Hamer, PC, Robles, SG, Zwinderman, AH, Duffau, H, Berger, MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 2012;30:2559–65. https://doi.org/10.1200/JCO.2011.38.4818.CrossRefGoogle ScholarPubMed
Dehaene, S, Cohen, L. The unique role of the visual word form area in reading. Trends Cogn Sci 2011;15:254–62. https://doi.org/10.1016/j.tics.2011.04.003.Google Scholar
Dehaene, S, Le Clec’H, G, Poline, JB, Le Bihan, D, Cohen, L. The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport 2002;13:321–5. https://doi.org/10.1097/00001756-200203040-00015.Google Scholar
Dell, GS, Schwartz, MF, Nozari, N, Faseyitan, O, Branch Coslett, H. Voxel-based lesion-parameter mapping: identifying the neural correlates of a computational model of word production. Cognition 2013;128:380–96. https://doi.org/10.1016/j.cognition.2013.05.007.Google Scholar
Dierker, D, Roland, JL, Kamran, M, et al. Resting-state functional magnetic resonance imaging in presurgical functional mapping: sensorimotor localization. Neuroimaging Clin N Am 2017;27:621–33. https://doi.org/10.1016/j.nic.2017.06.011.Google Scholar
Doss, RC, Zhang, W, Risse, GL, Dickens, DL. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 2009;50:2242–8. https://doi.org/10.1111/j.1528-1167.2009.02242.x.Google Scholar
Duffau, H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol 2005;4:476–86. https://doi.org/10.1016/S1474-4422(05)70140-X.CrossRefGoogle Scholar
Duffau, H. The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia 2008;46:927–34. https://doi.org/10.1016/j.neuropsychologia.2007.10.025.CrossRefGoogle ScholarPubMed
Duffau, H. The dangers of magnetic resonance imaging diffusion tensor tractography in brain surgery. World Neurosurg 2014;81:56–8. https://doi.org/10.1016/j.wneu.2013.01.116.Google Scholar
Duffau, H, Capelle, L, Denvil, D, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 2003;98:764–78. https://doi.org/10.3171/jns.2003.98.4.0764.Google Scholar
Duffau, H, Herbet, G, Moritz-Gasser, S. Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front Syst Neurosci 2013;7:44. https://doi.org/10.3389/fnsys.2013.00044Google Scholar
Duffau, H, Moritz-Gasser, S, Mandonnet, E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 2014;131:110. https://doi.org/10.1016/j.bandl.2013.05.011.CrossRefGoogle ScholarPubMed
Ellis, DG, White, ML, Hayasaka, S, Warren, DE, Wilson, TW, Aizenberg, MR. Accuracy analysis of fMRI and MEG activations determined by intraoperative mapping. Neurosurg Focus 2020;48:E13. https://doi.org/10.3171/2019.11.FOCUS19784.Google Scholar
Englot, DJ, Nagarajan, SS, Imber, BS, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 2015;56:949–58. https://doi.org/10.1111/epi.13002.Google Scholar
Feigl, GC, Hiergeist, W, Fellner, C, et al. Magnetic resonance imaging diffusion tensor tractography: evaluation of anatomic accuracy of different fiber tracking software packages. World Neurosurg 2014;81:144–50. https://doi.org/10.1016/j.wneu.2013.01.004.CrossRefGoogle ScholarPubMed
Fernández Coello, A, Moritz-Gasser, S, Martino, J, Martinoni, M, Matsuda, R, Duffau, H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg 2013;119:1380–94. https://doi.org/10.3171/2013.6.JNS122470.Google Scholar
Fiez, JA, Tranel, D, Seager-Frerichs, D, Damasio, H. Specific reading and phonological processing deficits are associated with damage to the left frontal operculum. Cortex 2006;42:624–43. https://doi.org/10.1016/s0010-9452(08)70399-x.Google Scholar
Forseth, KJ, Kadipasaoglu, CM, Conner, CR, Hickok, G, Knight, RT, Tandon, N. A lexical semantic hub for heteromodal naming in middle fusiform gyrus. Brain 2018;141:2112–26. https://doi.org/10.1093/brain/awy120.Google Scholar
Fox, MD, Snyder, AZ, Vincent, JL, Corbetta, M, Van Essen, DC, Raichle, ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102(27):9673–8. https://doi.org/10.1073/pnas.0504136102.Google Scholar
Fridriksson, J, Kjartansson, O, Morgan, PS, et al. Impaired speech repetition and left parietal lobe damage. J Neurosci 2010;30:11057–61. https://doi.org/10.1523/JNEUROSCI.1120-10.2010.Google Scholar
Funnell, E. Phonological processes in reading: new evidence from acquired dyslexia. Br J Psychol 1983;74:159–80. https://doi.org/10.1111/j.2044-8295.1983.tb01851.x.Google Scholar
Geschwind, N. Disconnexion syndromes in animals and man. I.Brain 1965;88:237–94. https://doi.org/10.1093/brain/88.2.237.Google Scholar
Gil-Robles, S, Carvallo, A, Jimenez, MM, et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery 2013;72:678–86. https://doi.org/10.1227/NEU.0b013e318282a361.CrossRefGoogle ScholarPubMed
Gogos, AJ, Young, JS, Morshed, RA, et al. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg 2020;134(6):172837. https://doi.org/10.3171/2020.3.JNS193434.Google Scholar
Gonen, T, Grossman, R, Sitt, R, et al. Tumor location and IDH1 mutation may predict intraoperative seizures during awake craniotomy. J Neurosurg 2014;121:1133–8. https://doi.org/10.3171/2014.7.JNS132657.CrossRefGoogle ScholarPubMed
Goodglass, H. Diagnosis of conduction aphasia. In Kohn, SE (Ed.), Conduction Aphasia. New York: Psychology Press, 1992, pp. 4960.Google Scholar
Graves, WW, Grabowski, TJ, Mehta, S, Gupta, P. The left posterior superior temporal gyrus participates specifically in accessing lexical phonology. J Cogn Neurosci 2008;20:1698–710. https://doi.org/10.1162/jocn.2008.20113.Google Scholar
Guggisberg, AG, Honma, SM, Findlay, AM, et al. Mapping functional connectivity in patients with brain lesions. Ann Neurol 2008;63:193203. https://doi.org/10.1002/ana.21224.Google Scholar
Håberg, A, Kvistad, KA, Unsgård, G, Haraldseth, O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery 2004;54:902–15. https://doi.org/10.1227/01.neu.0000114510.05922.f8.CrossRefGoogle ScholarPubMed
Hamandi, K, Routley, BC, Koelewijn, L, Singh, KD. Non-invasive brain mapping in epilepsy: applications from magnetoencephalography. J Neurosci Methods 2016;260:283–91. https://doi.org/10.1016/j.jneumeth.2015.11.012.Google Scholar
Hamberger, MJ, Goodman, RR, Perrine, K, Tamny, T. Anatomic dissociation of auditory and visual naming in the lateral temporal cortex. Neurology 2001;56:5661. https://doi.org/10.1212/wnl.56.1.56.Google Scholar
Hamberger, MJ, Seidel, WT, Mckhann, GM, Perrine, K, Goodman, RR. Brain stimulation reveals critical auditory naming cortex. Brain 2005;128:2742–9. https://doi.org/10.1093/brain/awh621Google Scholar
Han, SJ, Morshed, RA, Troncon, I, et al. Subcortical stimulation mapping of descending motor pathways for perirolandic gliomas: assessment of morbidity and functional outcome in 702 cases. J Neurosurg 2018;131:201–08. https://doi.org/10.3171/2018.3.JNS172494.Google Scholar
Hari, R, Levänen, S, Raij, T. Timing of human cortical functions during cognition: role of MEG. Trends Cogn Sci 2000;4:455–62. https://doi.org/10.1016/s1364-6613(00)01549-7.Google Scholar
Hickok, G, Buchsbaum, B, Humphries, C, Muftuler, T. Auditory–motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 2003;15:673–82. https://doi.org/10.1162/089892903322307393.CrossRefGoogle ScholarPubMed
Hickok, G, Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 2000;4:131–8. https://doi.org/ 10.1016/s1364-6613(00)01463-7.Google Scholar
Hickok, G, Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 2004;92:6799. https://doi.org/10.1016/j.cognition.2003.10.011.Google Scholar
Hirshorn, EA, Li, Y, Ward, MJ, Richardson, RM, Fiez, JA, Ghuman, AS. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc Natl Acad Sci U S A 2016;113:8162–7. https://doi.org/10.1073/pnas.1604126113.Google Scholar
Jobard, G, Crivello, F, Tzourio-Mazoyer, N. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 2003;20:693712. https://doi.org/10.1016/S1053-8119(03)00343-4.CrossRefGoogle Scholar
Keles, GE, Lundin, DA, Lamborn, KR, Chang, EF, Ojemann, G, Berger, MS. Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 2004;100:369–75. https://doi.org/10.3171/jns.2004.100.3.0369.Google Scholar
Khanna, N, Altmeyer, W, Zhuo, J, Steven, A. Functional neuroimaging: fundamental principles and clinical applications. Neuroradiol J 2015;28:8796. https://doi.org/10.1177/1971400915576311.Google Scholar
Kinoshita, M, Yamada, K, Hashimoto, N, et al. Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 2005;25:424–9. https://doi.org/10.1016/j.neuroimage.2004.07.076.Google Scholar
Kleiser, R, Staempfli, P, Valavanis, A, Boesiger, P, Kollias, S. Impact of fMRI-guided advanced DTI fiber tracking techniques on their clinical applications in patients with brain tumors. Neuroradiology 2010;52:3746. https://doi.org/10.1007/s00234-009-0539-2.Google Scholar
Leclercq, D, Duffau, H, Delmaire, C, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 2010;112:503–11. https://doi.org/10.3171/2009.8.JNS09558.Google Scholar
Lee, AT, Faltermeier, C, Morshed, RA, et al. The impact of high functional connectivity network hub resection on language task performance in adult low- and high-grade glioma. J Neurosurg 2020;134(3):1102–112. https://doi.org/10.3171/2020.1.JNS192267.Google Scholar
Leonard, MK, Cai, R, Babiak, MC, Ren, A, Chang, EF. The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings. Brain Lang 2019;193:5872. https://doi.org/10.1016/j.bandl.2016.06.001.Google Scholar
Magill, ST, Han, SJ, Li, J, Berger, MS. Resection of primary motor cortex tumors: feasibility and surgical outcomes. J Neurosurg 2018;129:961–72. https://doi.org/10.3171/2017.5.JNS163045.Google Scholar
Makris, N, Kennedy, DN, McInerney, S, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 2005;15:854–69. https://doi.org/10.1093/cercor/bhh186CrossRefGoogle ScholarPubMed
Martino, J, De Witt Hamer, PC, Berger, MS, et al. Analysis of the subcomponents and cortical terminations of the perisylvian superior longitudinal fasciculus: a fiber dissection and DTI tractography study. Brain Struct Funct 2013;218:105–21. https://doi.org/10.1007/s00429-012-0386-5.Google Scholar
Martino, J, Honma, SM, Findlay, AM, et al. Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 2011;69:521–32. https://doi.org/10.1002/ana.22167.Google Scholar
Mitchell, TJ, Hacker, CD, Breshears, JD, et al. A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 2013;73:969–83. https://doi.org/10.1227/NEU.0000000000000141.Google Scholar
Moritz-Gasser, S, Duffau, H. The anatomo-functional connectivity of word repetition: insights provided by awake brain tumor surgery. Front Hum Neurosci 2013;7:405. https://doi.org/10.3389/fnhum.2013.00405.Google Scholar
Negwer, C, Beurskens, E, Sollmann, N, et al. Loss of subcortical language pathways correlates with surgery-related aphasia in patients with brain tumor: an investigation via repetitive navigated transcranial magnetic stimulation-based diffusion tensor imaging fiber tracking. World Neurosurg 2018;111:e806–18. https://doi.org/10.1016/j.wneu.2017.12.163.Google Scholar
Nossek, E, Matot, I, Shahar, T, et al. Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurgery 2013;73:135–40; discussion 140. https://doi.org/10.1227/01.neu.0000429847.91707.97.Google Scholar
Oelschlägel, M, Meyer, T, Morgenstern, U, et al. Mapping of language and motor function during awake neurosurgery with intraoperative optical imaging. Neurosurg Focus 2020;48:E3. https://doi.org/10.3171/2019.11.FOCUS19759.Google Scholar
Ojemann, G. Intraoperative investigations of the neurobiology of reading. In Euler, CV, Lundberg, I, Llinás, RR (Eds.), Basic Mechanisms in Cognition and Language with Special Reference to Phonological Problems in Dyslexia. Elsevier, 1998: p. 288.Google Scholar
Ojemann, G, Mateer, C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science 1979;205:1401–03. https://doi.org/10.1126/science.472757.CrossRefGoogle ScholarPubMed
Ojemann, G, Ojemann, J, Lettich, E, Berger, M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg 1989;71:316–26. https://doi.org/10.3171/jns.1989.71.3.0316.Google Scholar
Papanicolaou, AC, Simos, PG, Castillo, EM, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 2004;100:867–76. https://doi.org/10.3171/jns.2004.100.5.0867.Google Scholar
Parker, J, Prejawa, S, Hope, TM et al. Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study. Front Hum Neurosci 2014;8:24. https://doi.org/10.3389/fnhum.2014.00024.Google Scholar
Paulesu, E, Frith, CD, Frackowiak, RS. The neural correlates of the verbal component of working memory. Nature 1993;362:342–5. https://doi.org/10.1038/362342a0.CrossRefGoogle ScholarPubMed
Penfield, W, Roberts, L. Speech and Brain Mechanisms. Princeton: Princeton University Press, 1959.Google Scholar
Pierpaoli, C, Jezzard, P, Basser, PJ, Barnett, A, Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996;201:637–48. https://doi.org/10.1148/radiology.201.3.8939209.Google Scholar
Plans, G, Fernández-Conejero, I, Rifà-Ros, X, Fernández-Coello, A, Rosselló, A, Gabarrós, A. Evaluation of the high-frequency monopolar stimulation technique for mapping and monitoring the corticospinal tract in patients with supratentorial gliomas. A proposal for intraoperative management based on neurophysiological data analysis in a series of 92 patients.Neurosurgery 2017;81:585–94. https://doi.org/10.1093/neuros/nyw087.Google Scholar
Plaza, M, Gatignol, P, Cohen, H, Berger, B, Duffau, H. A Discrete area within the left dorsolateral prefrontal cortex involved in visual–verbal incongruence judgment. Cerebr Cortex 2007;18:1253–9. https://doi.org/10.1093/cercor/bhm169.Google Scholar
Pouratian, N, Bookheimer, SY, O’Farrell, AM, et al. Optical imaging of bilingual cortical representations. Case report. J Neurosurg 2000;93:676–81. https://doi.org/10.3171/jns.2000.93.4.0676.Google Scholar
Prabhu, SS, Gasco, J, Tummala, S, Weinberg, JS, Rao, G. Intraoperative magnetic resonance imaging-guided tractography with integrated monopolar subcortical functional mapping for resection of brain tumors. Clinical article.J Neurosurg 2011;114:719–26. https://doi.org/10.3171/2010.9.JNS10481.Google Scholar
Quigg, M, Fountain, NB. Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus. J Neurol Neurosurg Psychiatry 1999;66:393–6. https://doi.org/10.1136/jnnp.66.3.393.Google Scholar
Quigg, M, Geldmacher, DS, Elias, WJ. Conduction aphasia as a function of the dominant posterior perisylvian cortex. Report of two cases. J Neurosurg 2006;104:845–8. https://doi.org/10.3171/jns.2006.104.5.845.Google Scholar
Rahman, M, Abbatematteo, J, De Leo, EK, et al. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg 2017;127:123–31. https://doi.org/10.3171/2016.7.JNS16396.Google Scholar
Rapcsak, SZ, Beeson, PM, Henry, ML, et al. Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates. Cortex 2009;45:575–91. https://doi.org/10.1016/j.cortex.2008.04.006.Google Scholar
Rogalsky, C, Poppa, T, Chen, KH, et al. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: a voxel-based lesion symptom mapping study. Neuropsychologia 2015;71:1827. https://doi.org/10.1016/j.neuropsychologia.2015.03.012.Google Scholar
Roland, JL, Hacker, CD, Snyder, AZ, et al. A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients. NeuroImage Clin 2019;23:101850. https://doi.org/10.1016/j.nicl.2019.101850.Google Scholar
Roux, FE, Durand, JB, Djidjeli, I, Moyse, E, Giussani, C. Variability of intraoperative electrostimulation parameters in conscious individuals: language cortex. J Neurosurg 2017;126:1641–52. https://doi.org/10.3171/2016.4.JNS152434.Google Scholar
Roux, FE, Durand, JB, Jucla, M, Réhault, E, Reddy, M, Démonet, JF. Segregation of lexical and sub-lexical reading processes in the left perisylvian cortex. PLoS One 2012;7:e50665. https://doi.org/10.1371/journal.pone.0050665.Google Scholar
Roux, FE, Lubrano, V, Lauwers-Cances, V, Trémoulet, M, Mascott, CR, Démonet, JF. Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain 2004;127:1796–810. https://doi.org/10.1093/brain/awh204.Google Scholar
Sanai, N, Mirzadeh, Z, Berger, MS. Functional outcome after language mapping for glioma resection. N Engl J Med 2008;358:1827. https://doi.org/10.1056/NEJMoa067819.Google Scholar
Saur, D, Kreher, BW, Schnell, S, et al. Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 2008;105:18035–40. https://doi.org/10.1073/pnas.0805234105.Google Scholar
Schonberg, T, Pianka, P, Hendler, T, Pasternak, O, Assaf, Y. Characterization of displaced white matter by brain tumors using combined DTI and fMRI. Neuroimage 2006;30:1100–11. https://doi.org/10.1016/j.neuroimage.2005.11.015.Google Scholar
Sherbondy, AJ, Dougherty, RF, Napel, S, Wandell, BA. Identifying the human optic radiation using diffusion imaging and fiber tractography. J Vis 2008;8:12.11211. https://doi.org/10.1167/8.10.12.Google Scholar
Sierpowska, J, Gabarrós, A, Fernandez-Coello, A, et al. Words are not enough: nonword repetition as an indicator of arcuate fasciculus integrity during brain tumor resection. J Neurosurg 2017;126:435–45.Google Scholar
Smith, SM, Fox, PT, Miller, KL, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci 2009;106:13040–5. https://doi.org/10.1073/pnas.0905267106.Google Scholar
Snodgrass, JG, Vanderwart, M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J Exp Psychol Hum Learn 1980;6:174215. https://doi.org/10.1037//0278-7393.6.2.174.CrossRefGoogle ScholarPubMed
Stieglitz, LH, Fichtner, J, Andres, R, et al. The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 2013;72:796807. https://doi.org/10.1227/NEU.0b013e318287072d.Google Scholar
Szelényi, A, Senft, C, Jardan, M, et al. Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 2011;122:1470–5. https://doi.org/10.1016/j.clinph.2010.12.055.CrossRefGoogle ScholarPubMed
Tarapore, PE, Martino, J, Guggisberg, AG, et al. Magnetoencephalographic imaging of resting-state functional connectivity predicts postsurgical neurological outcome in brain gliomas. Neurosurgery 2012a;71:1012–22. https://doi.org/10.1227/NEU.0b013e31826d2b78.Google Scholar
Tarapore, PE, Tate, MC, Findlay, AM et al. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg 2012b;117:354–62. https://doi.org/10.3171/2012.5.JNS112124.Google Scholar
Toh, CH, Wei, KC, Ng, SH, Wan, YL, Lin, CP, Castillo, M. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. Am J Neuroradiol 2011;32:1646–51. https://doi.org/10.3174/ajnr.A2581.Google Scholar
Tovar-Spinoza, ZS, Ochi, A, Rutka, JT, Go, C, Otsubo, H. The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 2008;25:E16. https://doi.org/10.3171/FOC/2008/25/9/E16.Google Scholar
Volkow, ND, Rosen, B, Farde, L. Imaging the living human brain: magnetic resonance imaging and positron emission tomography. Proc Natl Acad Sci U S A 1997;94:2787–8. https://doi.org/10.1073/pnas.94.7.2787.Google Scholar
Wagner, K, Hader, C, Metternich, B, Buschmann, F, Schwarzwald, R, Schulze-Bonhage, A. Who needs a Wada test? Present clinical indications for amobarbital procedures. J Neurol Neurosurg Psychiatry 2012;83:503–09. https://doi.org/10.1136/jnnp-2011-300417.Google Scholar
Warrington, EK, Shallice, T. Word-form dyslexia. Brain 1980;103:99112. https://doi.org/10.1093/brain/103.1.99.Google Scholar
Young, JS, Morshed, RA, Mansoori, Z, Cha, S, Berger, MS. Disruption of frontal aslant tract is not associated with long-term postoperative language deficits. World Neurosurg 2020;133:192–5. https://doi.org/10.1016/j.wneu.2019.09.128.Google Scholar
Zeineh, MM, Holdsworth, S, Skare, S, Atlas, SW, Bammer, R. Ultra-high resolution diffusion tensor imaging of the microscopic pathways of the medial temporal lobe. Neuroimage 2012;62:2065–82. https://doi.org/10.1016/j.neuroimage.2012.05.065.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×