Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-15T01:01:58.133Z Has data issue: false hasContentIssue false

8 - Noisy input models: barrage of spike arrivals

Published online by Cambridge University Press:  05 August 2014

Wulfram Gerstner
Affiliation:
École Polytechnique Fédérale de Lausanne
Richard Naud
Affiliation:
University of Ottawa
Liam Paninski
Affiliation:
Columbia University, New York
Get access

Summary

Neurons in the brain receive input from thousands of other, presynaptic neurons, which emit action potentials and send their spikes to their postsynaptic targets. From the perspective of a postsynaptic neuron receiving a barrage of spikes, spike arrival times may look completely random, even under the assumption that presynaptic neurons generate their spikes by a deterministic process. Indeed, as we have seen in the preceding chapter, internal noise sources of a cell, such as spontaneous opening of ion channels, do not account for all the variability of spike-trains encountered in freely behaving animals in vivo. Rather, it is likely that a large fraction of the apparent variability is generated by the network. Modeling studies confirm that networks with fixed random connectivity can lead to chaos on the microscopic level, so that spike arrival times appear to be random even if generated by a deterministic network.

In this chapter, we discuss the consequences of stochastic spike arrivals for modeling. The “noise” generated by the network is often described by a noise term in the differential equation of the membrane voltage (Section 8.1). Such a noise term, typically modeled as white noise or colored noise, can be derived in a framework of stochastic spike arrival, as shown in Section 8.2. Stochastic spike arrival leads to fluctuations of the membrane potential which will be discussed in the case of a passive membrane (Section 8.2.1) – or, more generally, for neuron models in the subthreshold regime.

Type
Chapter
Information
Neuronal Dynamics
From Single Neurons to Networks and Models of Cognition
, pp. 202 - 223
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×