Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T06:12:44.597Z Has data issue: false hasContentIssue false

1(c) - Single photon and positron emission tomography

from Part 1 - Modern methods of neuroimaging

Published online by Cambridge University Press:  15 January 2010

David Ames
Affiliation:
University of Melbourne
Edmond Chiu
Affiliation:
University of Melbourne
Get access

Summary

It is the functional, as opposed to the morphological, capability of nuclear medicine investigations that is their great strength. Initially, the technique involved the injection of suitable gamma-emitting radionuclides into the blood or CSF to produce an image of regional function in the brain (cerebral scintigraphy) or of CSF flow (radionuclide cisternography). Disease was then detected by assessing the degree to which the so-called blood brain barrier could be breached or to what extent the normal channels of CSF flow were altered.

If a solitary gamma-ray detection device, such as a gamma camera, is used to map the radionuclide distribution in one plane at a time, the resulting images are referred to as planar images. Alternatively, if the detector is designed to accumulate images at intervals over 360° around the brain, computer techniques similar to those described in Chapter 1(a) can be used to reconstruct cross-sectional representations of function.

Planar cerebral imaging

Routine cerebral scintigraphy became universally available when appropriate detectors and radionuclides could be combined. The basis of all detection systems is the scintillation unit (Fig. 1.38), containing the all-important sodium iodide crystal and photomultiplier tubes. These constituted the old rectilinear scanners, which preceded the gamma camera, invented by Hal Anger in 1961 (Fig. 1.39). Gamma cameras make use of one large scintillator crystal and a number of photomultiplier tubes arranged so that the spatial relationships of radioactive tracers in the brain can be precisely recorded, stored and displayed in many ways on a screen or as hard copy (Fig. 1.40).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×