Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T01:44:49.743Z Has data issue: false hasContentIssue false

1 - Principles of Neurobehavioral Teratology

Published online by Cambridge University Press:  10 August 2009

Linda C. Mayes
Affiliation:
Yale Child Study Center, Yale University
Anna Ward
Affiliation:
Yale Child Study, Center Yale University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

The first documented use of the word teratology was the title of a 1678 discourse of prodigies and wonders (OED, 1989). Taken from the Greek root, τέρασ, meaning prodigy, portent, omen, or wonder (Bauer, 1957, 1979), the original connotation in Homer and in the New Testament was of divine communication: “Unless you see signs and wonders you will not believe” (John 4:48). The word did not acquire its connotation of deformed or monstrous until the mid-nineteenth century, when it first appeared in 1842 in a dictionary of scientific terms indicating the study of monsters or anomalies. Shortly thereafter, the term teratogenesis appeared in Robley Dunglison's fifteenth edition of a medical lexicon to indicate the study of deformities in the organization in plants and animals. Nineteenth-century physicians and scientists were well schooled in the Attic Greek of Homer and likely would have known that for the Greeks, deformities in infants were taken as a sign of divine warning, displeasure, or retribution. Moreover, that monstrous births were portents of displeasure and disaster also influenced European thinking. During the Middle Ages, births of malformed infants were significant events thought to predict catastrophes and “signs of punishment at hand” (Pare's Chyrugery, 1579, quoted in Warkany, 1977). Hence, in their choice of the root τέρασ, nineteenth-century physicians brought together the notion of portent with the emphasis on monstrosity and horror to the study of unexpected and poorly understood malformations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, E. L. (1992). Paternal exposure to alcohol. In Perinatal substance abuse: Research findings and clinical implications (ed. Sonderegger, T. B.), pp. 132–160. Baltimore: Johns Hopkins University Press
Adams, J. (1999). On neurodevelopmental disorders: Perspectives from neurobehavioral teratology. In Neurodevelopmental disorders (ed. Tager-Flusberg, H.), pp. 452–468. Cambridge, Mass.: MIT Press
Adams, P. M., Fabricant, J. D., & Legator, M. S. (1981). Cyclophosphamid-induced speratogenic effects detected in the F1 generation by behavioral testing. Science 211, 80–82CrossRefGoogle Scholar
Babor, T. F., Brown, J., & delBoca, F. K. (1990). Validity of self-reports in applied research on addictive behaviors: Fact or fiction? Behavioral Assessment 12, 5–31Google Scholar
Baron, R. & Kenny, D. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 51, 1173–1182CrossRefGoogle ScholarPubMed
Bauer, W. (1957, 1979). A Greek-English lexicon of the New Testament and early christian literature. Chicago: University of Chicago Press
Beckwith, L., Howard, J., Espinosa, M., & Tyler, R. (1999). Psychopathology, mother-child interaction, and infant development: Substance-abusing mothers and their offspring. Development and Psychopathology 11, 715–725CrossRefGoogle ScholarPubMed
Bender, S. L., Word, C. O., DiClemente, R. J., Crittenden, M. R., Persaud, N. A., & Ponton, L. E. (1995). The developmental implications of prenatal and/or postnatal crack cocaine exposure in preschool children: A preliminary report. Journal of Developmental and Behavioral Pediatrics 16, 418–424CrossRefGoogle ScholarPubMed
Bernstein, V. & Hans, S. (1994). Predicting the developmental outcome of two-year-old children born exposed to methadone: Impact of social-environmental risk factors. Journal of Clinical Child Psychology 23, 349–359CrossRefGoogle Scholar
Berrettini, W. & Persico, A. (1996). Dopamine D2 receptor gene polymorphisms and vulnerability to substance abuse. Biological Psychiatry 40, 144–147CrossRefGoogle ScholarPubMed
Boyd, C. & Mieczkowski, T. (1990). Drug use, health, family, and social support in “crack” cocaine users. Addictive Behavior 15, 481–415CrossRefGoogle ScholarPubMed
Brookoff, D., O'Brien, K., Cook, C. S., Thompson, T. D., & Williams, C. (1997). Characteristics of participants in domestic violence. Journal of the American Medical Association 277, 1369–1373CrossRefGoogle ScholarPubMed
Butcher, R. E. (1985). A historical perspective on behavioral teratology. Neurobehavior, Teratology, & Toxicology 7, 537–540Google ScholarPubMed
Butcher, R. E., Hawver, K., Burbacher, T., & Scott, W. (1975). Behavioral effects from antenatal exposure to teratogens. In Aberrant development in infancy: Human and infant studies (ed. Ellis, N. R.). Hillsdale, N.J.: Erlbaum
Callahan, C. M., Grant, T. M., Phipps, P., Clark, G., Novack, A. H., Streissguth, A. P., & Raisys, V. A. (1992). Measurement of gestational cocaine exposure: Sensitivity of infants' hair, meconium, and urine. Journal of Pediatrics 120, 763–768CrossRefGoogle ScholarPubMed
Carey, K. (1997). Clinical rating scales for substance abuse. Psychiatric Services 48, 106–107Google Scholar
Chasnoff, I., Landress, H., & Barrett, M. (1990). The prevalence of illicit drug or alcohol use during pregnancy and discrepancies in mandatory reporting in Pinellas County, Florida. New England Journal of Medicine 322, 1202–1206CrossRefGoogle ScholarPubMed
Cicchetti, D. & Rogosch, F. A. (1999). Psychopathology as risk for adolescent substance use disorders: A developmental psychopathology perspective. Journal of Clinical Child Psychology 28, 355–365CrossRefGoogle ScholarPubMed
Clure, C., Brady, K. T., Saladin, M. E., Johnson, D., Waid, R., & Rittenbury, M. (1999). Attention deficit/hyperactivity disorder and substance use: Symptoms pattern and drug choice. American Journal of Drug and Alcohol Abuse 25, 441–448CrossRefGoogle ScholarPubMed
Comings, D. E., Comings, B. G., Muhleman, D., Dietz, G., Shahbahrami, B., Tast, D., Knell, E., Kocsis, P., Baumgarten, R., Kovacs, B. W., Levy, D. L., Smith, M., Borison, R. K., Evans, D., Klein, D. N., MacMurray, J., Tosk, J. M., Sverd, J., Gysin, R., & Flanagan, S. D. (1991). The Dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. Journal of the American Medical Association 266, 1793–1800CrossRefGoogle ScholarPubMed
Comings, D. E., Muhleman, D., & Gysin, R. (1996). Dopamine receptor (DRD2) gene and susceptibility to postraumatic stress disorder: A study and replication. Biological Psychiatry 40, 368–372CrossRefGoogle Scholar
Compton, P. A., Anglin, M. D., Khalsa-Denison, E., & Paredes, A. (1996). The D2 dopamine receptor gene, addiction, and personality: Clinical correlates in cocaine abusers. Biological Psychiatry 39, 302–304CrossRefGoogle ScholarPubMed
Day, N. & Richardson, G. (1993). Cocaine use and crack babies: Science, the media, and miscommunication. Neurotoxicology and Teratology 15, 293–294CrossRefGoogle ScholarPubMed
Day, N., Richardson, G., Goldschmidt, L., Robles, N., Taylor, P., Stoffer, D., Cornelius, M., & Geva, D. (1994). The effect of prenatal marijuana exposure on the cognitive development of offspring at age three. Neurotoxicology and Teratology 16, 169–175CrossRefGoogle ScholarPubMed
DeVane, C. L., Simpkins, J. W., Miller, R. L., & Braun, S. B. (1989). Tissue distribution of cocaine in the pregnant rat. Life Sciences 45, 1271–1276CrossRefGoogle ScholarPubMed
Dietrich, K. N. (1999). Environmental toxins and child development. In Neurodevelopmental disorders (ed. Tager-Flusberg, H.), pp. 469–490. Cambridge, Mass.: MIT Press
Dow-Edwards, D. L., Freed, L. A., & Milhorat, T. H. (1988). Stimulation of brain metabolism by perinatal cocaine exposure. Devopmental Brain Research 42, 137–141CrossRefGoogle Scholar
Driscoll, P., Ferre, P., Fernandez-Teruel, A., & Levi de Stein, M. (1995). Effects of prenatal diazepam on two-way avoidance behavior, swimming navigation and brain levels of benzodiazepine-like molecules in male Roman high- and low-avoidance rats. Psychopharmacology 122, 51–57CrossRefGoogle ScholarPubMed
Frank, D. A., Augustyn, M., & Zuckerman, B. (1998). Neonatal neurobehavioral and neuroanatomic correlates of prenatal cocaine exposure. Problems of dose and confounding. Annals of the New York Academy of Science 846, 40–50CrossRefGoogle ScholarPubMed
Frank, D. A., Bresnahan, K., & Zuckerman, B. S. (1993). Maternal cocaine use: Impact on child health and development. Advances in Pediatrics 40, 65–99Google ScholarPubMed
Garg, U. C., Turndorf, H., & Bansinath, M. (1993). Effect of cocaine on macromolecular syntheses and cell proliferation in cultured glial cells. Neuroscience 57, 467–472CrossRefGoogle ScholarPubMed
Gelernter, J., Kranzler, H. R., Satel, S. L., & Rao, P. A. (1994). Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia. Neuropsychopharmacology 11, 195–200CrossRefGoogle ScholarPubMed
George, S., Cheng, R., Nguyen, T., Israel, Y., & O'Dowd, B. (1993). Polymorphisms of the D4 dopamine receptor alleles in chronic alcoholism. Biochemical and Biophysical Research Communications 196, 107–1114CrossRefGoogle ScholarPubMed
Gill, M., Daly, G., Heron, S., Hawi, Z., & Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry 2, 311–313CrossRefGoogle Scholar
Gilliam, D. M., Kotch, L. E., Dudek, B. C., & Riley, E. P. (1988). Ethanol teratogenesis in mice selected for differences in alcohol sensitivity. Alcohol 5, 513–519CrossRefGoogle ScholarPubMed
Ginsburg, B. E., Yanai, J., & Sze, P. Y. (1975). A developmental genetic study of the effects of alcohol consumed by parent mice on the behavior and development of their offspring. In Proceedings of the Fourth Annual Alcoholism Conference of the National Institute on Alcohol Abuse and Alcoholism, pp. 183–204. Washington, D.C.: Department of Health, Education, and Welfare
Glantz, M. D. (1992). A developmental psychopathology model of drug abuse vulnerability. In Vulnerability to Drug Abuse (ed. Glantz, M. D. and Pickens, R. W.), pp. 389–418. Washington, D.C.: American Psychological Association PressCrossRef
Goldman, D., Urbanek, M., Guenther, D., Robin, R., & Long, J. C. (1997). Linkage and association of a functional DRD2 variant and DRD2 markers to alcoholism, substance abuse, and schizophrenia in Southwestern American indians. American Journal of Medical Genetics 74, 386–3943.0.CO;2-N>CrossRefGoogle ScholarPubMed
Graham, K., Koren, G., Klein, J., Schneiderman, J., & Greenwald, M. (1989). Determination of gestational cocaine exposure by hair analysis. Journal of the American Medical Association 262, 3328–3330CrossRefGoogle ScholarPubMed
Greenough, W. T. (1991). Experience as a component of normal development: Evolutionary considerations. Developmental Psychology 27, 14–17CrossRefGoogle Scholar
Greenough, W. T., Black, J. E., Klintsova, A., Bates, K. E., & Weiler, I. J. (1999). Experience and plasticity in brain structure: Possible implications of basic research findings for developmental disorders. In The changing nervous system: Neurobehavioral consequences of early brain disorders (ed. Broman, S. H. and Fletcher, J. M.), pp. 51–70. New York: Oxford University Press
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development 58, 539–559CrossRefGoogle ScholarPubMed
Grissom, G. (1997). Treatment outcomes in inpatient and substance abuse programs. Psychiatric Annals 27, 113–118CrossRefGoogle Scholar
Hans, S. L., Bernstein, V. J., & Henson, L. G. (1999). The role of psychopathology in the parenting of drug-dependent women. Development and Psychopathology 11, 957–977CrossRefGoogle ScholarPubMed
Hawley, T. L. & Disney, E. R. (1992). Crack's children: The consequences of maternal cocaine abuse. Social Policy Report of the Society for Research in Child Development 6, 1–22Google Scholar
Howard, J., Beckwith, L., Espinosa, M., & Tyler, R. (1995). Development of infants born to cocaine-abusing women: Biologic/maternal influences. Neurotoxicology and Teratology 17, 403–411CrossRefGoogle ScholarPubMed
Hutchings, D. E. (1993). The puzzle of cocaine's effects following maternal use during pregnancy: Are there reconcilable differences? [see comments]. Neurotoxicology and Teratology 15, 281–286CrossRefGoogle Scholar
Kapron, C. M. & Trasler, D. G. (1997). Genetic determinants of teratogen-induced abnormal development in mouse and rat embryos in vitro. International Journal of Developmental Biology 41, 337–344Google ScholarPubMed
Kellogg, C. K. (1991). Postnatal effects of prenatal exposure to psychoactive drugs. Pre- & Peri-Natal Psychology Journal 5, 233–251Google Scholar
Kellogg, C., Tervo, D., Ison, J., Parisi, T., & Miller, R. K. (1980). Prenatal exposure to diazepam alters behavioral development in rats. Science 207, 205–207CrossRefGoogle ScholarPubMed
Kessler, R. C., Crum, R. M., Warner, L. A., Nelson, C. B., Schulenberg, J., & Anthony, J. C. (1997). Lifetime co-occurrence of DSM-III-R alcohol abuse and dependence with other psychiatric disorders in the National Comorbidity Survey. Archives of General Psychiatry 54, 313–321CrossRefGoogle ScholarPubMed
Kessler, R. C., Nelson, C. B., McGonagle, K. A., Edlund, M. J., Frank, R. G., & Leaf, P. J. (1996). The epidemiology of co-occurring addictive and mental disorders: Implications for prevention and service utilization. American Journal of Orthopsychiatry 66, 17–31CrossRefGoogle ScholarPubMed
Khantzian, E. J. (1983). An extreme case of cocaine dependence and marked improvement with methylphenidate treatment. American Journal of Psychiatry 140, 784–785Google ScholarPubMed
Khantzian, E. J., Gawin, F., Kleber, H. D., & Riordan, C. E. (1984). Methylphenidate treatment of cocaine dependence – a preliminary report. Journal of Substance Abuse Treatment 1, 107–112CrossRefGoogle ScholarPubMed
King, T. A., Perlman, J. R., Laptook, A. R., Rollins, N., Jackson, G., & Little, B. (1995). Neurologic manifestations of in utero cocaine exposure in near-term and term infants. Pediatrics 96, 259–264Google ScholarPubMed
Kjarasch, S. J., Glotzer, D., Vinci, R., Wietzman, M., & Sargent, T. (1991). Unsuspected cocaine exposure in children. American Journal of Diseases of Children 145, 204–206Google Scholar
Kline, J., Ng, S., Schittini, M., Levin, B., & Susser, M. (1997). Cocaine use during pregnancy: Sensitive detection by hair assay. American Journal of Public Health 87, 352–358CrossRefGoogle ScholarPubMed
Kosofsky, B. (1991). The effect of cocaine on developing human brain. National Institute Drug Abuse Monograph Series 114, 128–143Google ScholarPubMed
Kreek, M. J. (1996). Cocaine, dopamine, and the endogenous opioid system. Journal of Addictive Diseases 15, 73–96CrossRefGoogle ScholarPubMed
Kristensen, J. H., Ilett, K. F., Hackett, L. P., Yapp, P., Paech, M., & Begg, E. J. (1999). Distribution and excretion of fluoxetine and norfluoxetine in human milk. British Journal of Clinical Pharmacology 48, 521–527CrossRefGoogle ScholarPubMed
Lester, B. M., Boukydis, C. Z., & Twomey, J. (2000). Maternal substance abuse and child outcome. In Handbook of infant mental health (ed. Zeanah, C. H.), pp. 161–175. New York: Guilford Press
Levy, M. & Koren, G. (1990). Obstetric and neonatal effects of drugs of abuse. Emergency Medicine Clinics of North America 8, 633–652Google ScholarPubMed
Levy, M. & Koren, G. (1992). Clinical toxicology of the neonate. Seminars in Perinatology 16, 63–75Google ScholarPubMed
Lief, N. R. (1985). The drug user as parent. International Journal of the Addictions 20, 63–97CrossRefGoogle ScholarPubMed
Lustbader, A. S., Mayes, L. C., McGee, B. A., Jatlow, P., & Roberts, W. L. (1998). Incidence of passive exposure to crack/cocaine and clinical findings in infants seen in an outpatient service. Pediatrics 102, 1CrossRefGoogle Scholar
Luthar, S. S., Cushing, G., Merikangas, K. R., & Rounsaville, B. J. (1998). Multiple jeopardy: Risk and protective factors among addicted mothers' offspring. Development and Psychopathology 10, 117–136CrossRefGoogle ScholarPubMed
Mactutus, C. F. & Tilson, H. A. (1986). Psychogenic and neurogenic abnormalities after perinatal insecticide exposure: A critical review. In Handbook of behavioral teratology (ed. Riley, E. P. and Voorhees, C. V.), pp. 335–383. New York: PlenumCrossRef
Mayes, L. C. (1995). Substance abuse and parenting. In The handbook of parenting (ed. Bornstein, M.), pp. 101–125. Hillsdale, N.J.: Erlbaum
Mayes, L. C. (1999). Developing brain and in-utero cocaine exposure: Effects on neural ontogeny. Development and Psychopathology 11, 685–714CrossRefGoogle ScholarPubMed
Mayes, L. C. & Bornstein, M. H. (1995). Developmental dilemmas for cocaine-abusing parents and their children. In Mothers, babies, and cocaine: The role of toxins in development (ed. Lewis, M. and Bendersky, M.), pp. 251–272. Hillsdale, N.J.: Erlbaum
Mayes, L. C. & Fahy, T. (2001). Prenatal drug exposure and cognitive development. In Environmental effects on cognitive abilities (ed. Sternberg, R. J. and Grigorenko, E. L.), pp. 189–220. Mahwah, N.J.: Erlbaum
Mayes, L. C., Granger, R. H., Bornstein, M. H., & Zuckerman, B. (1992). The problem of prenatal cocaine exposure. A rush to judgment. Journal of the American Medical Association 267, 406–408CrossRefGoogle Scholar
Mayes, L. C., Grillon, C., Granger, R., & Schottenfeld, R. (1998). Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Annals of the New York Academy of Science 846, 126–143CrossRefGoogle ScholarPubMed
McBride, W. G. (1977). Thalidomide embryopathy. Teratology 16, 79–82CrossRefGoogle ScholarPubMed
McFie, J. & Robertson, J. (1973). Psychological test results of children with thalidomide deformities. Developmental Medicine and Child Neurology 15, 719–727CrossRefGoogle ScholarPubMed
Middahugh, L. D. (1986). Prenatal phenobarbital: Effects on pregnancy and offspring. In Handbook of behavioral teratology (ed. Riley, E. P. and Voorhees, C. V.), pp. 243–263. New York: PlenumCrossRef
Miller, B. A., Smyth, N. J., & Mudar, P. J. (1999). Mothers' alcohol and other drug problems and their punitiveness toward their children. Journal of Studies on Alcohol 60, 632–642CrossRefGoogle ScholarPubMed
Moore, T. R., Sorg, J., Miller, L., Key, T. C., & Resnik, R. (1986). Hemodynamic effects of intravenous cocaine on the pregnant ewe and fetus. American Journal of Obstetrics and Gynecology 155, 883–888CrossRefGoogle ScholarPubMed
Muramatsu, T., Higuchi, S., Murayama, M., Matsushita, S., & Hayashida, M. (1996). Association between alcoholism and the dopamine D4 receptor gene. Journal of Medical Genetics 33, 113–115CrossRefGoogle ScholarPubMed
Nelson, B. K. (1981). Dose/effect relationships in developmental neurotoxicology. Neurobehavioral Toxicology and Teratology 3, 255Google ScholarPubMed
Nelson, B. K. (1990). Origins of behavioral teratology and distinctions between research on pharmaceutical agents and environmental/industrial chemicals. Neurotoxicology and Teratology 12, 301–305CrossRefGoogle ScholarPubMed
Noble, E. P. (1993). The D2 dopamine receptor gene: A review of association studies in alcoholism. Behavioral Genetics 23, 119–129CrossRefGoogle ScholarPubMed
Noble, E. P., Blum, K., Khalsa, M. E., Ritchie, T., Montgomery, A., Wood, R. C., Fitch, R. J., Ozkaragoz, T., Sheridan, P. J., Anglin, M. D., Paredes, A., Treiman, L. J., & Sparkes, R. S. (1993). Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug and Alcohol Dependence 33, 271–285CrossRefGoogle ScholarPubMed
Noble, E. P., Blum, K., Ritchie, T., Montgomery, A., & Sheridan, P. J. (1991). Allelic association of the D2 dopamine receptor gene with receptor binding characteristics in alcoholism. Archives of General Psychiatry 48, 648–654CrossRefGoogle ScholarPubMed
Ostrea, E. M. (1995). Meconium drug analysis. In Mothers, babies and cocaine: The role of toxins in development (ed. Lewis, M. and Bendersky, M.), pp. 179–202. Hillsdale, N.J.: Erlbaum
Oxford English Dictionary, 2nd edition (ed. Simpson, J. A. and Weiner, E. S. C.). Oxford: Oxford University Press, 1989
Rees, D. C., Francis, E. Z., & Kimmel, C. A. (1990). Scientific and regulatory issues relevant to assessing risk for developmental neurotoxicity: An overview. Neurotoxicology and Teratology 12, 175–181CrossRefGoogle ScholarPubMed
Regan, D., Leifer, B., & Finnegan, L. (1982). Generations at risk: Violence in the lives of pregnant drug abusing women. Pediatric Research 16, 91Google Scholar
Reith, M. E. A. (1988). Cocaine receptors on monoamine transporters and sodium channels. NIDAResearch Monograph 88, 23–41Google Scholar
Richardson, G. & Day, N. (1994). Detrimental effects of prenatal cocaine exposure: Illusion or reality? Journal of the American Academy of Child and Adolescent Psychiatry 33, 28–34CrossRefGoogle ScholarPubMed
Richardson, G., Day, M., & McGauhey, P. (1993). The impact of prenatal marijuana and cocaine use on the infant and child. Clinical Obstetrics and Gynecology 36, 302–318CrossRefGoogle ScholarPubMed
Rogers, R. & Kelly, K. S. (1997). Denial and misreporting of substance abuse. In Clinical assessment of malingering and deception (ed. Rogers, R.), pp. 108–129. New York: Guilford Press
Rounsaville, B. J., Anton, S. F., Carroll, K., Budde, D., Prusoff, B. A., & Gawin, F. (1991). Psychiatric disorders of treatment-seeking cocaine abusers. Archives of General Psychiatry 48, 43–51CrossRefGoogle ScholarPubMed
Rowe, D. C., Stever, C., Gard, J. M., Cleveland, H. H., Sanders, M. L., Abramowitz, A., Kozol, S. T., Mohr, J. H., Sherman, S. L., & Waldman, I. D. (1998). The relation of the dopamine transporter gene (DAT1) to symptoms of internalizing disorders in children. Behavior Genetics 28, 215–225CrossRefGoogle ScholarPubMed
Schmidt, K., Olesen, O. V., & Jensen, P. N. (2000). Citalopram and breast-feeding: Serum concentration and side effects in the infant. Biological Psychiatry 47, 164–165CrossRefGoogle ScholarPubMed
Seagull, F. N., Mowery, J. L., Simpson, P. M., Robinson, R. R., Martier, S. S., Sokol, R. J., & McGarver-May, D. G. (1996). Maternal assessment of infant development: Associations with alcohol and drug use in pregnancy. Clinical Pediatrics 35, 621–628CrossRefGoogle ScholarPubMed
Shippenberg, T. S. & Rea, W. (1997). Sensitization to the behavioral effects of cocaine: modulation by dynorphin and kappa-opioid receptor agonists. Pharmacology, Biochemistry and Behavior 57, 449–455CrossRefGoogle ScholarPubMed
Smith, S. S., OHara, B. F., Persico, A. M., Gorelick, D. A., Newlin, D. B., Vlahov, D., Solomon, L., Pickens, R., & Uhl, G. R. (1992). Genetic vulnerability to drug abuse: The D2 dopamine receptor Taq I B1 restriction length polymorphism appears more frequently in polysubstance abusers. Archnives of General Psychiatry 49, 723–727CrossRefGoogle ScholarPubMed
Spear, L. P. (1993). Missing pieces of the puzzle complicate conclusions about cocaine's neurobehavioral toxicity in clinical populations: Importance of animal models [comment]. Neurotoxicology and Teratology 15, 307–309; discussion 311–302CrossRefGoogle Scholar
Spear, L. P. (1997). Neurobehavioral abnormalities following exposure to drugs of abuse during development. In Drug addiction and its treatment: Nexus of neuroscience and behavior (ed. Johnson, B. A. and Roache, J. D.), pp. 233–255. Philadelphia: Lippincott-Raven
Spear, L. P., Campbell, J., Snyder, K., Silveri, M., & Katovic, N. (1998). Animal behavior models. Increased sensitivity to stressors and other environmental experiences after prenatal cocaine exposure. Annals of the New York Academy of Science 846, 76–88CrossRefGoogle ScholarPubMed
Spear, L. P., Kirstein, C. L., & Frambes, N. A. (1989). Cocaine effects on the developing central nervous system: Behavioral, psychopharmacological, and neurochemical studies. Annals of the New York Academy of Science 562, 290–307CrossRefGoogle ScholarPubMed
Spyker, J. M. (1975). Behavioral teratology and toxicology. In Behavioral toxicology (ed. Weiss, B. and Laties, V. G.), pp. 311–344. New York: PlenumCrossRef
Suffet, F. & Brotman, R. (1976). Employment and social disability among opiate addicts. American Journal of Drug and Alcohol Abuse 3, 387–395CrossRefGoogle ScholarPubMed
Tronick, E. Z., Frank, D. A., Cabral, H., Mirochnick, M., & Zuckerman, B. (1996). Late dose-response effects of prenatal cocaine exposure on newborn neurobehavioral performance. Pediatrics 98, 76–83Google ScholarPubMed
Tucker, M. B. (1979). A descriptive and comparative analysis of the social support structure of heroin addicted women. Addicted women: Family dynamics, self-perceptions, and support systems (ed. NIDA), pp. 37–76. Washington, D.C.: U.S. Government Printing Office
Uhl, G. R., Persisco, A. M., & Smith, S. S. (1992). Current excitement with D2 dopamine receptor gene alleles in substance abuse. Archives General Psychiatry 49, 157–160CrossRefGoogle ScholarPubMed
Verheul, R., Kranzler, H. R., Poling, J., Tenne, H., Ball, S., & Rounsaville, B. J. (2000). Co-occurrence of Axis I and Axis II disorders in substance abusers. Acta Psychiatrica Scandinavica 101, 110–118CrossRefGoogle ScholarPubMed
Volpe, J. (1987). Neurology of the newborn. Phildelphia: WB Saunders
Vorhees, C. V. (1974). Some behavioral effects of maternal hypervitaminosis A in rats. Teratology 10, 269–274CrossRefGoogle ScholarPubMed
Vorhees, C. V. (1986). Origins of behavioral teratology. In Handbook of behavioral teratology (ed. Riley, E. P. and Vorhees, C. V.), pp. 3–22. New York: PlenumCrossRef
Vorhees, C. V. (1986a). Behavioral teratology of anticonvulsant and antianxiety medications. In Handbook of behavioral teratology (ed. Riley, E. P. and Vorhees, C. V.). New York: Plenum
Vorhees, C. V. (1986b). Principles of behavioral teratology. In Handbook of behavioral teratology (ed. Riley, E. P. and Vorhees, C. V.), pp. 23–48. New York: Plenum
Vorhees, C. V. (1986c). Comparison and critique of government regulations for behavioral teratology. In Handbook of behavioral teratology (ed. Riley, E. P. and Vorhees, C. V.). New York: Plenum
Vorhees, C. V. (1986d). Behavioral teratology of anticonvulsant and antianxiety medications. In Handbook of behavioral teratology (ed. Riley, E. P. and Vorhees, C. V.), pp. 211–242. New York: Plenum
Vorhees, C. V., Brunner, R. L., & Butcher, R. E. (1979). Psychotropic drugs as behavioral teratogens. Science 205, 1220–1225CrossRefGoogle ScholarPubMed
Vorhees, C. V. & Butcher, R. E. (1982). Behavioral teratogenicity. In Developmental toxicology (ed. Snell, K.). New York: PraegerCrossRef
Vorhees, C. V. & Mollnow, E. (1987). Behavioral teratogenesis: Long-term influences on behavior from early exposure to environmental agents. In Handbook of infant development (ed. Osofsky, J.), pp. 913–971. New York: Wiley
Warkany, J. (1977). History of teratology. In General principles and etiology, vol. 1 (ed. Wilson, J. G. and Fraser, F. C.), pp. 3–45. New York: PlenumCrossRef
Warkany, J. (1978). Terathanasia. Teratology 17, 187–192CrossRefGoogle ScholarPubMed
Warkany, J., Lemire, R. J., & Cohen, M. M. (1981). Mental retardation and congenital malformations of the central nervous system. Chicago: Year Book Medical Publishers
Wee, E. L. & Zimmerman, E. F. (1983). Involvement of GABA in palate morphogenesis and its relation to diazepam teratogenesis in two mouse strains. Teratology 28, 15–22CrossRefGoogle ScholarPubMed
Weiss, R. D., Najavits, L. M., Greenfield, S. F., Soto, J. A., Shaw, S. R., & Wyner, D. (1998). Validity of substance use self-reports in dually diagnosed outpatients. American Journal of Psychiatry 155, 127–128CrossRefGoogle ScholarPubMed
White, F. J., Hu, X. T., Zhang, X. F., & Wolf, M. E. (1995). Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. Journal of Pharmacology & Experimental Therapeutics 273, 445–454Google ScholarPubMed
Wilson, J. G. (1973). Environment and birth defects. New York: Academic Press
Wilson, J. G. (1977). Current status of teratology – General priniciples and mechanisms derived from animal studies. In Handbook of teratology, vol. 1 (ed. Wilson, J. G. and Fraser, F. C.), pp. 47–74. New York: Plenum
Woods, J. R.., Plessinger, M. A., & Clark, K. E. (1987). Effect of cocaine on uterine blood flow and fetal oxygenation. Journal of the American Medical Association 257, 957–961CrossRefGoogle ScholarPubMed
Ye, J. H., Liu, P. L., Wu, W. H., & McArdle, J. J. (1997). Cocaine depresses GABAA current of hippocampal neurons. Brain Research 770, 169–175CrossRefGoogle ScholarPubMed
Ziedonis, D. M. (1992). Comorbid psychopathology and cocaine addiction. In Clinician's guide to cocaine addiction (ed. Kosten, T. R. and Kleber, H. D.), pp. 335–358. New York: Guilford Press

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×