Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T02:55:09.613Z Has data issue: false hasContentIssue false

3 - Neurodevelopment During Adolescence

Published online by Cambridge University Press:  10 August 2009

Linda Patia Spear
Affiliation:
Center for Developmental Psychobiology, Binghamton University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Adolescence is a time of considerable change. Adolescents undergo periods of rapid growth and emergence of secondary sexual characteristics, along with sometimes sudden changes in behavior and mood. These obvious visible signs of adolescence are mirrored by at least as dramatic internal alterations that include substantial increases in hormone release as well as notable changes in the brain. Indeed, adolescents rival newborns in the sheer magnitude of the developmental transformations occurring in their brains.

It is interesting to note that, to the extent relevant data are available, many of these neural changes – as well as certain related behavioral ramifications – are seen across adolescents of a variety of species. Thus, although we often think of adolescence as being a characteristic phase of human development, similarities across species in the neurobehavioral features of this developmental transition have led to the suggestion that certain adolescent-typical behaviors (and their neural underpinnings) may have been evolutionarily conserved. The transformations occurring in the adolescent brain may not only facilitate characteristic adolescent behaviors, but may also alter the expression of psychopathology as at-risk individuals traverse this developmental period.

DEFINITION AND TIMING OF ADOLESCENCE

Adolescence can be defined as the gradual transformation from youth/dependency to adulthood/independency. Adolescence is not synonymous with puberty. The physiological processes associated with the attainment of sexual maturation – puberty – occur during a relatively restricted interval within the broader adolescent period, with a timing that varies considerably among individuals.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriani, W., Chiarotti, F., & Laviola, G. (1998). Elevated novelty seeking and peculiar d-amphetamine sensitization in periadolescent mice compared with adult mice. Behavioral Neuroscience, 112, 1152–1166CrossRefGoogle ScholarPubMed
Ahima, R. S., Dushay, J., Flier, S. N., Prabakaran, D., & Flier, J. S. (1997). Leptin accelerates the onset of puberty in normal female mice. Journal of Clinical Investigation, 99, 391–395CrossRefGoogle ScholarPubMed
Akbarian, S., Bunney, W. E.., Potkin, S. G., Wigal, S. B., Hagman, J. O., Sandman, C. A., & Jones, E. G. (1993). Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Archives of General Psychiatry, 50, 169–177CrossRefGoogle ScholarPubMed
Andersen, S. L., Dumont, N. L., & Teicher, M. H. (1997). Developmental differences in dopamine synthesis inhibition by (±)-7-OH-DPAT. Naunyn-Schmiedeberg's Archives of Pharmacology, 356, 173–181CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (1999, October). Cyclic adenosine monophosphate (cAMP) changes dramatically across periadolescence and region. Poster session presented at the annual meeting of the Society for Neuroscience, Miami Beach, Fla
Andersen, S. L., Thompson, A. T., Rutstein, M., Hostetter, J. C., & Teicher, M. H. (2000). Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse, 37, 167–1693.0.CO;2-B>CrossRefGoogle ScholarPubMed
Anokhin, A. P., Lutzenberger, W., Nikolaev, A., & Birbaumer, N. (2000). Complexity of electrocortical dynamics in children: developmental aspects. Developmental Psychobiology, 36, 9–223.0.CO;2-5>CrossRefGoogle ScholarPubMed
Baird, A. A., Gruber, S. A., Fein, D. A., Maas, L. C., Steingard, R. J., Renshaw, P. F., Cohen, B. M., & Yurgelun-Todd, D. A. (1999). Functional magnetic resonance imaging of facial affect recognition in children and adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 195–199CrossRefGoogle ScholarPubMed
Baumrind, D. (1987). A developmental perspective on adolescent risk taking in contemporary America. In C. E. Irwin, Jr. (Ed.), Adolescent social behavior and health (pp. 93–125). San Francisco: Jossey-BassCrossRef
Belue, R. C., Howlett, A. C., Westlake, T. M. & Hutchings, D. E. (1995). The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats. Neurotoxicology and Teratology, 17, 25–30CrossRefGoogle ScholarPubMed
Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369CrossRefGoogle ScholarPubMed
Bixler, R. H. (1992). Why littermates don't: The avoidance of inbreeding depression. Annual Review of Sex Research, 3, 291–328CrossRefGoogle Scholar
Blinkov, S. M., & Glezer, I. I. (1968). The human brain in figures and tables: A quantitative handbook. New York: Plenum
Blum, W. F. (1997). Leptin: The voice of the adipose tissue. Hormone Research, 48, 2–8CrossRefGoogle ScholarPubMed
Bogerts, B. (1989). Limbic and paralimbic pathology in schizophrenia: Interaction with age- and stress-related factors. In S. C. Schulz & C. A. Tamminga (Eds.), Schizophrenia: Scientific progress (pp. 216–226). Oxford: Oxford University Press
Bolanos, C. A., Glatt, S. J., & Jackson, D. (1998). Subsensitivity to dopaminergic drugs in periadolescent rats: A behavioral and neurochemical analysis. Developmental Brain Research, 111, 25–33CrossRefGoogle ScholarPubMed
Bourgeois, J.-P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cerebral Cortex, 4, 78–96CrossRefGoogle ScholarPubMed
Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In M. H. Bornstein & J. L. Genevro (Eds.), Child development and behavioral pediatrics (pp. 35–58). Mahwah, N.J.: Erlbaum
Brook, C. G., & Hindmarsh, P. C. (1992). The somatotropic axis in puberty. Endocrinology and Metabolism Clinics of North America, 21, 767–782Google ScholarPubMed
Brooks-Gunn, J., & Attie, I. (1996). Developmental psychopathology in the context of adolescence. In M. F. Lenzenweger & J. J. Haugaard (Eds.), Frontiers of developmental psychopathology (pp. 148–189). New York: Oxford University Press
Brooks-Gunn, J., Petersen, A. C., & Compas, B. E. (1995). Physiological processes and the development of childhood and adolescent depression. In I. M. Goodyer (Ed.), The depressed child and adolescent: Developmental and clinical perspectives (pp. 81–109). Cambridge: Cambridge University Press
Brooks-Gunn, J., & Reiter, E. O. (1990). The role of pubertal processes. In S. S. Feldman & G. R. Elliott (Eds.), At the threshold: The developing adolescent (pp. 16–53). Cambridge, Mass.: Harvard University Press
Buchanan, C., Mahesh, V., Zamorano, P., & Brann, D. (1998). Central nervous system effects of leptin. Trends in Endocrinology and Metabolism, 9, 146–150CrossRefGoogle ScholarPubMed
Bunney, W. E., Jr., & Bunney, B. G. (1999). Neurodevelopmental hypothesis of schizophrenia. In D. S. Charney, E. J. Nestler, & B. S. Bunney (Eds.), Neurobiology of mental illness (pp. 225–235). New York: Oxford University Press
Cabib, S., & Puglisi-Allegra, S. (1996). Stress, depression and the mesolimbic dopamine system. Psychopharmacology, 128, 331–342CrossRefGoogle ScholarPubMed
Cabib, S., Puglisi-Allegra, S., & D'Amato, F. R. (1993). Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Research, 604, 232–239CrossRefGoogle ScholarPubMed
Campbell, A., Baldessarini, R. J., & Teicher, M. H. (1988). Decreasing sensitivity to neuroleptic agents in developing rats: Evidence for a pharmacodynamic factor. Psychopharmacology, 94, 46–51CrossRefGoogle ScholarPubMed
Casey, B. J., Giedd, J. N., & Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biological Psychology, 54, 241–257CrossRefGoogle ScholarPubMed
Cheung, C. C., Thornton, J. E., Kuijper, J. L., Weigle, D. S., Clifton, D. K., & Steiner, R. A. (1997). Leptin is a metabolic gate for the onset of puberty in the female rat. Endocrinology, 138, 855–858CrossRefGoogle ScholarPubMed
Cheung, C. C., Thornton, J. E., Nurani, S. D., Clifton, D. K., & Steiner, R. A. (2001). A reassessment of leptin's role in triggering the onset of puberty in the rat and mouse. Neuroendocrinology, 74, 12–21CrossRefGoogle Scholar
Chugani, H. T. (1994). Development of regional brain glucose metabolism in relation to behavior and plasticity. In G. Dawson & K. W. Fischer (Eds.), Human behavior and the developing brain (pp. 153–175). New York: Guilford Press
Chugani, H. T. (1996). Neuroimaging of developmental nonlinearity and developmental pathologies. In R. W. Thatcher, G. R. Lyon, J. Rumsey, & N. Krasnegor (Eds.), Developmental neuroimaging: Mapping the development of brain and behavior (pp. 187–195). San Diego: Academic Press
Cicchetti, D., & Walker, E. F. (2001). Stress and development: Biological and psychological. Development and Psychopathology, 13, 413–418CrossRefGoogle Scholar
Conrad, A. J., & Scheibel, A. B. (1987). Schizophrenia and the hippocampus: The embryological hypothesis extended. Schizophrenia Bulletin, 13, 577–587CrossRefGoogle ScholarPubMed
Crockett, C. M., & Pope, T. R. (1993). Consequences of sex differences in dispersal for juvenile red howler monkeys. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates (pp. 104–118, 367–415). New York: Oxford University Press
Csikszentmihalyi, M., Larson, R., & Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of Youth and Adolescence, 6, 281–294CrossRefGoogle ScholarPubMed
Davidson, R. J., Abercrombie, H., Nitschke, J. B., & Putnam, K. (1999). Regional brain function, emotion and disorders of emotion. Current Opinion in Neurobiology, 9, 228–234CrossRefGoogle ScholarPubMed
Demotes-Mainard, J., Henry, C., Jeantet, Y., Arsaut, J., & Arnauld, E. (1996). Postnatal ontogeny of dopamine D3 receptors in the mouse brain: Autoradiographic evidence for a transient cortical expression. Developmental Brain Research, 94, 166–174CrossRefGoogle ScholarPubMed
Depue, R. A., & Spoont, M. R. (1986). Conceptualizing a serotonin trait: A behavioral dimension of constraint. Annals of the New York Academy of Sciences, 487, 47–62CrossRefGoogle ScholarPubMed
Deutch, A. Y. (1992). The regulation of subcortical dopamine systems by the prefrontal cortex: Interactions of central dopamine systems and the pathogenesis of schizophrenia. Journal of Neural Transmission, 36, 61–89Google ScholarPubMed
Diana, M., Melis, M., & Gessa, G. L. (1998). Increase in meso-prefrontal dopaminergic activity after stimulation of CBI receptors by cannabinoids. European Journal of Neuroscience, 10, 2825–2830CrossRefGoogle Scholar
Dunn, A. J. (1988). Stress-related activation of cerebral dopaminergic systems. Annals of the New York Academy of Sciences, 537, 188–205CrossRefGoogle ScholarPubMed
Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317CrossRefGoogle ScholarPubMed
Feinberg, I. (1987). Adolescence and mental illness. Science, 236, 507CrossRefGoogle ScholarPubMed
Flores, G., Wood, G. K., Liang, J.-J., Quirion, R., & Srivastava, L. K. (1996). Enhanced amphetamine sensitivity and increased expression of dopamine D2 receptors in postpubertal rats after neonatal excitotoxic lesions of the medial prefrontal cortex. Journal of Neuroscience, 16, 7366–7375CrossRefGoogle ScholarPubMed
Fride, E., & Mechoulam, R. (1996a). Developmental aspects of anandamide: Ontogeny of response and prenatal exposure. Psychoneuroendocrinology, 21, 157–172CrossRefGoogle Scholar
Fride, E., & Mechoulam, R. (1996b). Ontogenetic development of the response to anandamide and Δ -(9)-tetrahydrocannabinol in mice. Developmental Brain Research, 95, 131–134CrossRefGoogle Scholar
Gabriel, S. M., Roncancio, J. R., & Ruiz, N. S. (1992). Growth hormone pulsatility and the endocrine milieu during sexual maturation in male and female rats. Neuroendocrinology, 56, 619–628CrossRefGoogle ScholarPubMed
Galef, B. G., Jr. (1977). Mechanisms for the social transmission of food preferences from adult to weanling rats. In L. M. Barker, M. Best, & M. Domjan (Eds.), Learning mechanisms in food selection (pp. 123–148). Waco, Tex.: Baylor University Press
Gardner, E. L. (1999). The neurobiology and genetics of addiction: Implications of the reward deficiency syndrome for therapeutic strategies in chemical dependency. In J. Elster (Ed.), Addiction: Entries and exits (pp. 57–119). New York: Russell Sage Foundation
Ge, X., Lorenz, F. O., Conger, R. D., Elder, G. H.., & Simons, R. L. (1994). Trajectories of stressful life events and depressive symptoms during adolescence. Developmental Psychology, 30, 467–483CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999b). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Rajapakse, J. C., Vaituzis, A. C., Liu, H., Berry, Y. C., Tobin, M., Nelson, J., & Castellanos, F. X. (1999a). Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23, 571–588Google Scholar
Giedd, J. N., Castellanos, F. X., Rajapakse, J. C., Vaituzis, A. C., & Rapoport, J. L. (1997). Sexual dimorphism of the developing human brain. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21, 1185–1201CrossRefGoogle ScholarPubMed
Giuffrida, A., Parsons, L. H., Kerr, T. M., Rodríguez de Fonseca, F., Navarro, M., & Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neuroscience, 2, 358–363CrossRefGoogle ScholarPubMed
Goldman, P. S. (1971). Functional development of the prefrontal cortex in early life and the problem of neuronal plasticity. Experimental Neurology, 32, 366–387CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Isseroff, A., Schwartz, M. L., & Bugbee, N. M. (1983). The neurobiology of cognitive development. In P. H. Mussen (Vol. Ed.), Handbook of child psychology, Vol. II. Infancy and developmental psychobiology (pp. 281–344). New York: Wiley
Goodman, A. B. (1998). Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 95, 7240–7244CrossRefGoogle Scholar
Graber, J. A., & Brooks-Gunn, J. (1996). Transitions and turning points: Navigating the passage from childhood through adolescence. Developmental Psychology, 32, 768–776CrossRefGoogle Scholar
Greenhill, L. L., & Setterberg, S. (1993). Pharmacotherapy of disorders of adolescents. Psychiatric Clinics of North America, 16, 793–814Google ScholarPubMed
Harris, J. R. (1995). Where is the child's environment? A group socialization theory of development. Psychological Review, 102, 458–489CrossRefGoogle Scholar
Heiman, M. L., Chen, Y., & Caro, J. (1998). Leptin participates in the regulation of glucocorticoid and growth hormone axes. Journal of Nutritional Biochemistry, 9, 553–559CrossRefGoogle Scholar
Hirsch, S. R., Das, I., Garey, L. J., & Belleroche, J. (1997). A pivotal role for glutamate in the pathogenesis of schizophrenia, and its cognitive dysfunction. Pharmacology, Biochemistry and Behavior, 56, 797–802CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density of human frontal cortex – developmental changes and effects of aging. Brain Research, 163, 195–205Google ScholarPubMed
Huttenlocher, P. R. (1984). Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88, 488–496Google ScholarPubMed
Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31, 6–41CrossRefGoogle ScholarPubMed
Insel, T. R., Miller, L. P., & Gelhard, R. E. (1990). The ontogeny of excitatory amino acid receptors in rat forebrain: I. N-methyl-d-aspartate and quisqualate receptors. Neuroscience, 35, 31–43CrossRefGoogle ScholarPubMed
Irwin, C. E., Jr., & Millstein, S. G. (1992). Correlates and predictors of risk-taking behavior during adolescence. In L. P. Lipsitt & L. L. Mitnick (Eds.), Self-regulatory behavior and risk taking: Causes and consequences (pp. 3–21). Norwood, N.J.: Ablex Publishing
Jakob, H., & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission, 65, 303–326CrossRefGoogle ScholarPubMed
Jernigan, T. L., & Sowell, E. R. (1997). Magnetic resonance imaging studies of the developing brain. In M. S. Keshavan & R. M. Murray (Eds.), Neurodevelopment & adult psychopathology (pp. 63–70). Cambridge: Cambridge University Press
Jernigan, T. L., Trauner, D. A., Hesselink, J. R., & Tallal, P. A. (1991). Maturation of human cerebrum observed in vivo during adolescence. Brain, 114, 2037–2049CrossRefGoogle ScholarPubMed
Joyce, J. N., Frohna, P. A., & Neal-Beliveau, B. S. (1996). Functional and molecular differentiation of the dopamine system induced by neonatal denervation. Neuroscience and Biobehavioral Reviews, 20, 453–486CrossRefGoogle ScholarPubMed
Kalivas, P. W., Churchill, L., & Klitenick, M. A. (1993). The circuitry mediating the translation of motivational stimuli into adaptive motor responses. In P. W. Kalivas & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 237–287). Boca Raton, Fla.: CRC Press
Kalsbeek, A., Voorn, P., Buijs, R. M., Pool, C. W., & Uylings, H. B. M. (1988). Development of the dopaminergic innervation in the prefrontal cortex of the rat. Journal of Comparative Neurology, 269, 58–72CrossRefGoogle ScholarPubMed
Keane, B. (1990). Dispersal and inbreeding avoidance in the white-footed mouse, Peromyscus leucopus. Animal Behaviour, 40, 143–152CrossRefGoogle Scholar
Keepers, G., Clappison, V., & Casey, D. (1983). Initial anticholinergic prophylaxis for acute neuroleptic induced extrapyramidal syndromes. Archives of General Psychiatry, 40, 1113–1117CrossRefGoogle Scholar
Kellogg, C. K. (1991). Postnatal effects of prenatal exposure to psychoactive drugs. Pre- and Peri-Natal Psychology, 5, 233–251Google Scholar
Kellogg, C. K., Awatramani, G. B., & Piekut, D. T. (1998). Adolescent development alters stressor-induced Fos immunoreactivity in rat brain. Neuroscience, 83, 681–689CrossRefGoogle ScholarPubMed
Kempermann, G., & Gage, F. H. (2000). Neurogenesis in the adult hippocampus. In Novartis Foundation Symposium 231: Neural Transplantation in Neurodegenerative Disease: Current Status and New Directions (pp. 220–235). Chichester: John WileyCrossRef
Killgore, W. D. S., Oki, M., & Yurgelun-Todd, D. A. (2001). Sex-specific developmental changes in amygdala responses to affective faces. Neuroreport, 12, 427–433CrossRefGoogle ScholarPubMed
Kolb, B., & Nonneman, A. J. (1976). Functional development of prefrontal cortex in rats continues into adolescence. Science, 193, 335–336CrossRefGoogle ScholarPubMed
Koob, G. F. (1992). Neural mechanisms of drug reinforcement. Annals of the New York Academy of Sciences, 654, 171–191CrossRefGoogle ScholarPubMed
Koob, G. F. (1999). Stress, corticotropin-releasing factor, and drug addiction. Annals of the New York Academy of Sciences, 897, 27–45CrossRefGoogle ScholarPubMed
Koob, G. F., & Heinrichs, S. C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Research, 848, 141–152CrossRefGoogle ScholarPubMed
Koob, G. F., Robledo, P., Markou, A., & Caine, S. B. (1993). The mesocorticolimbic circuit in drug dependence and reward – a role for the extended amygdala? In P. W. Kalivas & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 289–309). Boca Raton, Fla.: CRC Press
Kovelman, J. A., & Scheibel, A. B. (1984). A neurohistological correlate of schizophrenia. Biological Psychiatry, 19, 1601–1621Google ScholarPubMed
Kurlan, R. (1992). The pathogenesis of Tourette's syndrome: A possible role for hormonal and excitatory neurotransmitter influences in brain development. Archives of Neurology, 49, 874–876CrossRefGoogle ScholarPubMed
Kutcher, S., & Sokolov, S. (1995). Adolescent depression: Neuroendocrine aspects. In I. M. Goodyer (Ed.), The depressed child and adolescent: Developmental and clinical perspectives (pp. 195–224). Cambridge: Cambridge University Press
Lahlou, N., Landais, P., Boissieu, D., & Bougnères, P.-F. (1997). Circulating leptin in normal children and during the dynamic phase of juvenile obesity: Relation to body fatness, energy metabolism, caloric intake, and sexual dimorphism. Diabetes, 46, 989–993CrossRefGoogle ScholarPubMed
Larson, R., & Richards, M. H. (1994). Divergent realities: The emotional lives of mothers, fathers, and adolescents. New York: Basic Books
Moal, M., & Simon, H. (1991). Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiological Reviews, 71, 155–234CrossRefGoogle ScholarPubMed
Leslie, C. A., Robertson, M. W., Cutler, A. J., & Bennett, J. P., Jr. (1991). Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: A quantitative autoradiographic analysis. Developmental Brain Research, 62, 109–114CrossRefGoogle ScholarPubMed
Levisohn, L., Cronin-Golomb, A., & Schmahmann, J. D. (2000). Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain, 123, 1041–1050CrossRefGoogle Scholar
Lipska, B. K., Jaskiw, G. E., & Weinberger, D. R. (1993). Postpubertal emergence of hyperresponsivenss to stress and to amphetamine after neonatal excitotoxic hippocampal damage: A potential animal model of schizophrenia. Neuropsychopharmacology, 9, 67–75CrossRefGoogle Scholar
Lipska, B. K., & Weinberger, D. R. (1993a). Cortical regulation of the mesolimbic dopamine system: Implications for schizophrenia. In P. W. Kalivas & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 329–349). Boca Raton, Fla.: CRC Press
Lipska, B. K., & Weinberger, D. R. (1993b). Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Developmental Brain Research, 75, 213–222CrossRefGoogle Scholar
Little, P. J., Kuhn, C. M., Wilson, W. A., & Swartzwelder, H. S. (1996). Differential effects of ethanol in adolescent and adult rats. Alcoholism: Clinical and Experimental Research, 20, 1346–1351CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P., Merriam, E. P., Garver, K. E., Minshew, N. J., Keshavan, M. S., Genovese, C. R., Eddy, W. F., & Sweeney, J. A. (2001). Maturation of widely distributed brain function subserves cognitive development. Neuroimage, 13, 786–793CrossRefGoogle ScholarPubMed
Mantzoros, C. S., Flier, J. S., & Rogol, A. D. (1997). A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. Journal of Clinical Endocrinology and Metabolism, 82, 1066–1070Google ScholarPubMed
Markwiese, B. J., Acheson, S. K., Levin, E. D., Wilson, W. A., & Swartzwelder, H. S. (1998). Differential effects of ethanol on memory in adolescent and adult rats. Alcoholism: Clinical and Experimental Research, 22, 416–421CrossRefGoogle ScholarPubMed
Mayes, L. C., Grillon, C., Granger, R. & Schottenfeld, R. (1998). Regulation of arousal and attention in preschool children exposed to cocaine prenatally. Annals of the New York Academy of Sciences, 846, 126–143CrossRefGoogle ScholarPubMed
Merola, J. L., & Liederman, J. (1985). Developmental changes in hemispheric independence. Child Development, 56, 1184–1194CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250CrossRefGoogle ScholarPubMed
Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21, 700–712CrossRefGoogle ScholarPubMed
Moltz, H. (1975). The search for the determinants of puberty in the rat. In B. E. Eleftheriou & R. L. Sprott (Eds.), Hormonal correlates of behavior: A lifespan view (pp. 35–154). New York: PlenumCrossRef
Montague, D. M., Lawler, C. P., Mailman, R. B., & Gilmore, J. H. (1999). Developmental regulation of the dopamine D1 receptor in human caudate and putamen. Neuropsychopharmacology, 21, 641–649CrossRefGoogle ScholarPubMed
Moore, J. (1992). Dispersal, nepotism, and primate social behavior. International Journal of Primatology, 13, 361–378CrossRefGoogle Scholar
Mrzljak, L., Uylings, H. B. M., van Eden, C. G., & Judáš, M. (1990). Neuronal development in human prefrontal cortex in prenatal and postnatal stages. In H. B. M. Uylings, C. G. van Eden, J. P. C. De Bruin, M. A. Corner, & M. G. P. Feenstra (Vol. Eds.), Progress in brain research: Vol. 85. The prefrontal cortex: Its structure, function and pathology (pp. 185–222). Amsterdam: Elsevier
Nowakowski, R. S., & Hayes, N. L. (1999). CNS development: An overview. Development and Psychopathology, 11, 395–417CrossRefGoogle ScholarPubMed
Palacios, J. M., Camps, M., Cortés, R., & Probst, A. (1988). Mapping dopamine receptors in the human brain. Neural Transmissions, 27, 227–235Google ScholarPubMed
Parker, L. N. (1991). Adrenarche. Endocrinology and Metabolism Clinics of North America, 20, 71–83Google ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., Rapoport, J. L., & Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 1908–1911CrossRefGoogle ScholarPubMed
Petersen, A. C., Silbereisen, R. K., & Sörensen, S. (1996). Adolescent development: A global perspective. In K. Hurrelmann & S. F. Hamilton (Eds.), Social problems and social contexts in adolescence (pp. 3–37). New York: Aldine de Gruyter
Pine, D. S., Grun, J., Zarahn, E., Fyer, A., Koda, V., Li, W., Szeszko, P. R., Ardekani, B., & Bilder, R. M. (2001). Cortical brain regions engaged by masked emotional faces in adolescents and adults: An fMRI study. Emotion, 1, 137–147CrossRefGoogle Scholar
Primus, R. J., & Kellogg, C. K. (1989). Pubertal-related changes influence the development of environment-related social interaction in the male rat. Developmental Psychobiology, 22, 633–643CrossRefGoogle ScholarPubMed
Puig-Antich, J. (1987). Sleep and neuroendocrine correlates of affective illness in childhood and adolescence. Journal of Adolescent Health Care, 8, 505–529CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J.-P., & Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: Implications for learning, memory, and mental illness. In J. van Pelt, M. A. Corner, H. B. M. Uylings, & F. H. Lopes da Silva (Vol. Eds.), Progress in brain research: Vol. 102. The self-organizing brain: From growth cones to functional networks (pp. 227–243). Amsterdam: ElsevierCrossRef
Rapoport, J. L., Giedd, J. N., Blumenthal, J., Hamburger, S., Jeffries, N., Fernandez, T., Nicolson, R., Bedwell, J., Lenane, M., Zijdenbos, A., Paus, T., & Evans, A. (1999). Progressive cortical change during adolescence in childhood-onset schizophrenia. Archives of General Psychiatry, 56, 649–654CrossRefGoogle ScholarPubMed
Riley, E. P. (1990). The long-term behavioral effects of prenatal alcohol exposure in rats. Alcoholism: Clinical and Experimental Research, 14, 670–673CrossRefGoogle ScholarPubMed
Rodríguez de Fonseca, F., Ramos, J. A., Bonnin, A., & Fernández-Ruiz, J. J. (1993). Presence of cannabinoid binding sites in the brain from early postnatal ages. Neuroreport, 4, 135–138CrossRefGoogle ScholarPubMed
Rosenberg, D. R., & Lewis, D. A. (1994). Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study. Biological Psychiatry, 36, 272–277CrossRefGoogle ScholarPubMed
Rosenberg, D. R., & Lewis, D. A. (1995). Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: A tyrosine hydroxylase immunohistochemical analysis. Journal of Comparative Neurology, 358, 383–400CrossRefGoogle ScholarPubMed
Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C. R., Simmons, A., Andrew, C., & Bullmore, E. T. (2000). Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI. Neuroscience and Biobehavioral Reviews, 24, 13–19CrossRefGoogle ScholarPubMed
Saugstad, L. F. (1994). The maturational theory of brain development and cerebral excitability in the multifactorially inherited manic-depressive psychosis and schizophrenia. International Journal of Psychophysiology, 18, 189–203CrossRefGoogle Scholar
Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121, 561–579CrossRefGoogle ScholarPubMed
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27CrossRefGoogle ScholarPubMed
Seeman, P., Bzowej, N. H., Guan, H.-C., Bergeron, C., Becker, L. E., Reynolds, G. P., Bird, E. D., Riederer, P., Jellinger, K., Watanabe, S., & Tourtellotte, W. W. (1987). Human brain dopamine receptors in children and aging adults. Synapse, 1, 399–404CrossRefGoogle ScholarPubMed
Silveri, M. M., & Spear, L. P. (1998). Decreased sensitivity to the hypnotic effects of ethanol early in ontogeny. Alcoholism: Clinical and Experimental Research, 22, 670–676CrossRefGoogle ScholarPubMed
Silveri, M. M., & Spear, L. P. (2001). The effects of NMDA and GABAApharmacological manipulations on ethanol sensitivity in immature and mature animals. Manuscript submitted for publication
Sowell, E. R., Thompson, P. M., Holmes, C. J., Batth, R., Jernigan, T. L., & Toga, A. W. (1999a). Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage, 9, 587–597CrossRefGoogle Scholar
Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999b). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861CrossRefGoogle Scholar
Spanagel, R., & Weiss, F. (1999). The dopamine hypothesis of reward: Past and current status. Trends in Neuroscience, 22, 521–527CrossRefGoogle ScholarPubMed
Spear, L. P. (2000a). The adolescent brain and age-related behavioral manifestations. Neuroscience and Biobehavioral Reviews, 24, 417–463CrossRefGoogle Scholar
Spear, L. P. (2000b). Adolescent period: Biological basis of vulnerability to develop alcoholism and other ethanol-mediated behaviors. In A. Noronha, M. Eckardt, & K. Warren (Eds.), NIAAA Research Monograph 34: Review of NIAAA's Neuroscience and Behavioral Research Portfolio (NIH Publication No. 00-4520, pp. 315–333). Washington, D.C.: U.S. Department of Health and Human Services
Spear, L. P., & Brake, S. C. (1983). Periadolescence: Age-dependent behavior and psychopharmacological responsivity in rats. Developmental Psychobiology, 16, 83–109CrossRefGoogle ScholarPubMed
Spear, L. P., Campbell, J., Snyder, K., Silveri, M., & Katovic, N. (1998). Animal behavior models: Increased sensitivity to stressors and other environmental experiences after prenatal cocaine exposure. Annals of the New York Academy of Sciences, 846, 76–88CrossRefGoogle ScholarPubMed
Spear, L. P., Shalaby, I. A., & Brick, J. (1980). Chronic administration of haloperidol during development: Behavioral and psychopharmacological effects. Psychopharmacology, 70, 47–58CrossRefGoogle ScholarPubMed
Spear, L. P., Silveri, M. M., Casale, M., Katovic, N. M., Campbell, J. O., & Douglas, L. A. (in press). Cocaine and development: A retrospective perspective. Neurotoxicology and TeratologyGoogle Scholar
Steinberg, L. (1989). Pubertal maturation and parent-adolescent distance: An evolutionary perspective. In G. R. Adams, R. Montemayor, & T. P. Gullotta (Eds.), Advances in adolescent behavior and development (pp. 71–97). Newbury Park, Calif.: Sage Publications
Susman, E. J., Inoff-Germain, G., & Nottelmann, E. D. (1987). Hormones, emotional dispositions, and aggressive attributes in young adolescents. Child Development, 58, 1114–1134CrossRefGoogle ScholarPubMed
Susman, E. J., & Ponirakis, A. (1997). Hormones – context interactions and anti-social behavior in youth. In A. Raine, P. A. Brennan, D. P. Farrington, & S. A. Mednick (Eds.), Biosocial bases of violence (pp. 251–269). New York: Plenum
Swartzwelder, H. S., Wilson, W. A., & Tayyeb, M. I. (1995a). Age-dependent inhibition of long-term potentiation by ethanol in immature versus mature hippocampus. Alcoholism: Clinical and Experimental Research, 19, 1480–1485CrossRefGoogle Scholar
Swartzwelder, H. S., Wilson, W. A., & Tayyeb, M. I. (1995b). Differential sensitivity of NMDA receptor-mediated synaptic potentials to ethanol in immature versus mature hippocampus. Alcoholism: Clinical and Experimental Research, 19, 320–323CrossRefGoogle Scholar
Takahashi, L. K., Turner, J. G., & Kalin, N. H. (1992). Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats. Brain Research, 574, 131–137CrossRefGoogle ScholarPubMed
Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D(1), D(2) and D(4) receptors in rat forebrain. International Journal of Developmental Neuroscience, 18, 29–37CrossRefGoogle Scholar
Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1998). Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neuroscience Letters, 254, 21–24CrossRefGoogle ScholarPubMed
Tarazi, F. I., Tomasini, E. C., & Baldessarini, R. J. (1999). Postnatal development of dopamine D1-like receptors in rat cortical and striatolimbic brain regions: An autoradiographic study. Developmental Neuroscience, 21, 43–49CrossRefGoogle Scholar
Teicher, M. H., & Andersen, S. L. (1999, October). Limbic serotonin turnover plunges during puberty. Poster session presented at the annual meeting of the Society for Neuroscience, Miami Beach, Fla
Teicher, M. H., Andersen, S. L., & Hostetter, J. C., Jr. (1995). Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Developmental Brain Research, 89, 167–172CrossRefGoogle Scholar
Terasawa, E., & Timiras, P. S. (1968). Electrophysiological study of the limbic system in the rat at onset of puberty. American Journal of Physiology, 215, 1462–1467Google ScholarPubMed
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., & Casey, B. J. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309–316CrossRefGoogle ScholarPubMed
Trimpop, R. M., Kerr, J. H., & Kirkcaldy, B. (1999). Comparing personality constructs of risk-taking behavior. Personality and Individual Differences, 26, 237–254CrossRefGoogle Scholar
Tyler, D. B., & Harreveld, A. (1942). The respiration of the developing brain. American Journal of Physiology, 136, 600–603Google Scholar
van Eden, C. G., Kros, J. M., & Uylings, H. B. M. (1990). The development of the rat prefrontal cortex: Its size and development of connections with thalamus, spinal cord and other cortical areas. In H. B. M. Uylings, C. G. van Eden, J. P. C. De Bruin, M. A. Corner, & M. G. P. Feenstra (Vol. Eds.), Progress in brain research: Vol. 85. The prefrontal cortex: Its structure, function and pathology (pp. 169–183). Amsterdam: Elsevier
Walker, E. F., & Diforio, D. (1997). Schizophrenia: A neural diathesis-stress model. Psychological Review, 104, 667–685CrossRefGoogle ScholarPubMed
Walker, E. F., & Walder, D. (this volume). Neurohormonal aspects of the development of psychotic disorders
Weinstock, M. (1997). Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis? Neuroscience & Biobehavioral Reviews, 21, 1–10CrossRefGoogle ScholarPubMed
Whishaw, I. Q., Fiorino, D., Mittleman, G., & Castaneda, E. (1992). Do forebrain structures compete for behavioral expression? Evidence from amphetamine-induced behavior, microdialysis, and caudate-accumbens lesions in medial frontal cortex damaged rats. Brain Research, 576, 1–11CrossRefGoogle ScholarPubMed
Wilkinson, L. S. (1997). The nature of interactions involving prefrontal and striatal dopamine systems. Journal of Psychopharmacology, 11, 143–150CrossRefGoogle ScholarPubMed
Wilson, M., & Daly, M. (1985). Competitiveness, risk taking, and violence: The young male syndrome. Ethology and Sociobiology, 6, 59–73CrossRefGoogle Scholar
Zecevic, N., Bourgeois, J.-P., & Rakic, P. (1989). Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Developmental Brain Research, 50, 11–32CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×