Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T09:49:46.147Z Has data issue: false hasContentIssue false

9 - Early Orbitofrontal-Limbic Dysfunction and Autism

Published online by Cambridge University Press:  10 August 2009

Jocelyne Bachevalier
Affiliation:
Department of Neurobiology and Anatomy, University of Texas Health Science Center
Katherine A. Loveland
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Only recently have researchers begun to appreciate the importance of studying the neurobiology of social cognition (Ochsner & Lieberman, 2001). This growing interest stems from evidence suggesting that dysfunction of structures within the neural network subserving social cognition may be at the origin of many neuropsychiatric disorders in humans. Reports of clinical cases with circumscribed lesions, as well as the results of neurostimulation, neurorecording, and neuroimaging of normal and impaired brain, have all provided evidence that there exists specific neural circuitry involved in the processing of social skills (for review see Adolphs, 2001). In addition, animal studies examining the neurobiology of social cognition have refined our knowledge of the brain systems that underlie such abilities and are helping us better understand how human social and emotional processes are realized (Raleigh, 1995). In this respect, nonhuman primates are undoubtedly excellent animal models, not only to investigate brain processes underlying social cognition and to determine the long-term behavioral outcomes of early dysfunction in the neural structures mediating social cognition, but also to determine the modulatory impact of perinatal experiences on brain and behavioral development (Sánchez, Ladd, & Plotsky, 2001).

Investigations of the social skills of nonhuman primates in the wild or in the laboratory have revealed that monkeys, like humans, live in social groups that are characterized by complex and dynamic social organizations maintained through a variety of specific, long-term relationships between individual group members (Cheney & Seyfarth, 1990; DeWaal, 1989).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, F., Krams, M., Ashburner, J., Passingham, R., Friston, K., Frackowiak, R., Happé, F., Frith, C., & Frith, U. (1999). The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. NeuroReport, 10, 1647–1651CrossRefGoogle ScholarPubMed
Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11, 231–239CrossRefGoogle ScholarPubMed
Alvarado, M. C., & Bachevalier, J. (2000). Revisiting the maturation of medial temporal lobe memory functions in primates. Learning & Memory, 7, 244–256CrossRefGoogle ScholarPubMed
Asherson, P. J., & Curran, S. (2001). Approaches to gene mapping in complex disorders and their application in child psychiatry and psychology. British Journal of Psychiatry, 179, 122–128CrossRefGoogle ScholarPubMed
Aylward, E. H., Minshew, N. J., Goldstein, G., Honeycutt, N. A., Augustine, A. M., Yates, K. O., Barta, P. E., & Pearlson, G. D. (1999). MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology, 53, 2145–2150CrossRefGoogle ScholarPubMed
Bachevalier, J. (1991). An animal model for childhood autism: Memory loss and socioemotional disturbances following neonatal damage to the limbic system in monkeys. In C. A. Tamminga & S. C. Schulz (Eds.), Advances in neuropsychiatry and psychopharmacology, Volume 1: schizophrenia research (pp. 129–140). New York: Raven Press
Bachevalier, J. (1994). Medial temporal lobe structures and autism: A review of clinical and experimental findings. Neuropsychologia, 32, 627–648CrossRefGoogle ScholarPubMed
Bachevalier, J. (2000). The amygdala, social behavior, and autism. In J. P. Aggleton (Ed.), The amygdala: A functional analysis, 2d ed. (pp. 509–544). New York: Oxford University Press
Bachevalier, J., Alvarado, M. C., & Málková, L. (1999). Effects of early versus late damage to the hippocampal formation on memory and socioemotional behavior in monkeys. Biological Psychiatry, 46, 329–339CrossRefGoogle Scholar
Bachevalier, J., Beauregard, M., & Alvarado, M. C. (1999). Lon-term effects of neonatal damage to the hippocampal formation and amygdaloid complex on object discrimination and object recognition in rhesus monkeys. Behavioral Neuroscience, 113, 1127–1151CrossRefGoogle Scholar
Bachevalier, J., Brickson, M., Hagger, C., & Mishkin, M. (1990). Age and sex differences in the effects of selective temporal lobe lesion on the formation of visual discrimination habits in rhesus monkeys. Behavioral Neuroscience, 104, 885–899CrossRefGoogle ScholarPubMed
Bachevalier, J., Málková, L., & Mishkin, M. (2001). Effects of selective neonatal medial temporal lobe lesions on socioemotional behaviors in monkeys. Behavioral Neuroscience, 115, 545–560CrossRefGoogle ScholarPubMed
Bachevalier, J., & Mishkin, M. (1994). Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys. Journal of Neuroscience, 14, 2128–2139CrossRefGoogle ScholarPubMed
Bacon, A., Fein, D., Morris, R., Waterhouse, L., & Allen, D. (1998). The responses of autistic children to the distress of others. Journal of Autism & Developmental Disorders, 28, 129–142CrossRefGoogle Scholar
Baron-Cohen, S., Leslie, A., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 37–46CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H. A., Bullmore, E. T., Wheelwright, S., Ashwin, C., & Williams, S. C. (2000). The amygdala theory of autism. Neuroscience and Biobehavioral Review, 24, 355–364CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., & Williams, S. C. R. (1999). Social intelligence in the normal and autistic brain: an fMRI study. European Journal of Neuroscience, 11, 1891–1898CrossRefGoogle Scholar
Bauman, M. L., & Kemper, T. L. (1993). Cytoarchitectonic changes in the brain of people with autism. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 119–145). Baltimore: Johns Hopkins Press
Beauregard, M., Málková, L., & Bachevalier, J. (1995). Stereotypies and loss of social affiliation after early hippocampectomy in monkeys. NeuroReport, 6, 2521–2526CrossRefGoogle Scholar
Bertolino, A., Saunders, R. C., Mattay, V. S., Bachevalier, J., Frank, J. A., & Weinberger, D. R. (1997). Altered development of prefrontal neurons in rhesus monkeys with neonatal mesial temporo-limbic lesions: a proton magnetic resonance spectroscopic imaging study. Cerebral Cortex, 7, 740–748CrossRefGoogle ScholarPubMed
Brothers, L. (1995). Neurophysiology of the perception of intention by primates. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1107–1117). Cambridge, Mass.: MIT Press
Byrne, R., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes, and humans. Oxford: Clarendon Press
Campbell, M., Rosenbloom, S., Perry, R., George, A. E., Kricheff, I. I., Anderson, L., Small, A. M., & Jennings, S. J. (1982). Computerized axial tomography in young autistic children. American Journal of Psychiatry, 139, 510–512Google ScholarPubMed
Caparros-Lefebvre, D., Girard-Buttaz, I., Reboul, S., Lebert, F., Cabaret, M., Verier, A., Steinling, M., Pruvo, J. P., & Petit, H. (1996). Cognitive and psychiatric impairment in herpes simplex virus encephalitis suggest involvement of the amygdalo-frontal pathways. Journal of Neurology, 243, 248–256CrossRefGoogle ScholarPubMed
Capps, L., Kasari, C., Yirmiya, N., & Sigman, M. (1993). Parental perception of emotional expressiveness in children with autism. Journal of Consulting & Clinical Psychology, 61, 475–484CrossRefGoogle ScholarPubMed
Carper, R. A., & Courchesne, E. (2000). Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain, 123, 836–844CrossRefGoogle ScholarPubMed
Cheney, D. L., & Seyfarth, R. M. (1990). How monkeys see the world. Chicago: University of Chicago Press
Chlan-Fourney, J., Webster, M. J., Felleman, D. J., & Bachevalier, J. (2000). Neonatal medial temporal lobe lesions alter the distribution of tyrosine hydroxylase immunoreactive varicosities in the macaque prefrontal cortex. Society for Neuroscience Abstract, 26, 6093Google Scholar
Chutorian, A. B., & Antunes, J. L. (1981). Klüver-Bucy syndrome and Herpes encephalitis: Case report. Neurosurgery, 8, 388–390CrossRefGoogle ScholarPubMed
Cicchetti, D., & Cannon, T. D. (1999). Neurodevelopmental processes in the ontogenesis and epigenesis of psychopathology. Development and Psychopathology, 11, 375–393CrossRefGoogle ScholarPubMed
Cicchetti, D., & Tucker, D. (1994). Development and self-regulatory structures of the mind. Development and Psychopathology, 6, 533–549CrossRefGoogle Scholar
Cook, Jr., E. H. (1998). Genetics of autism. Mental Retardation and Developmental Disabilities Research Reviews, 4, 113–1203.0.CO;2-Q>CrossRefGoogle Scholar
Corona, R., Dissanayake, C., Arbelle, S., Wellington, P., & Sigman, M. (1998). Is affect aversive to young children with autism? Behavioral and cardiac responses to experimenter distress. Child Development, 69, 1494–1502CrossRefGoogle ScholarPubMed
Critchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Amelsvoort, T., Robertson, D. M., Rowe, A., Phillips, M., McAlonan, G., Howlin, P., & Murphy, D. G. (2000). The functional neuroanatomy of social behaviour: Changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123, 2203–2212CrossRefGoogle ScholarPubMed
Damasio, A. R., Maurer, R. G., Damasio, A. R., & Chui, H. (1980). Computerized tomographic scan findings in patients with autistic behavior. Archives of Neurology, 37, 504–510CrossRefGoogle ScholarPubMed
Davidson, R. J. (1994). Asymmetric brain function, affective style, and psychopathology: The role of early experience and plasticity. Development and Psychopathology, 6, 741–758CrossRefGoogle Scholar
Dawson, G. (1996). The neuropsychology of autism. Journal of Autism and Developmental Disorders, 26, 179–184CrossRefGoogle ScholarPubMed
Dawson, G., Hessl, D., & Frey, K. (1994). Social influences on early-developing biological and behavioral systems related to risk for affective disorder. Development and Psychopathology, 6, 759–779CrossRefGoogle Scholar
DeLong, G. R. (1978). A neuropsychological interpretation of infantile autism. In E. Schopler & G. B. Mesibov (Eds.), Autism (pp. 207–218). New York: Plenum
Dennis, M., Lockyer, L., & Lazenby, A. L. (2000). How high-functioning children with autism understand real and deceptive emotion. Autism, 4, 370–381CrossRefGoogle Scholar
Deonna, T., Ziegler, A-L., Moura-Serra, J., & Innocenti, G. (1993). Autistic regression in relation to limbic pathology and epilepsy: Report of two cases. Developmental Medicine and Child Neurology, 35, 166–176CrossRefGoogle ScholarPubMed
Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118, 279–306CrossRefGoogle ScholarPubMed
DeWaal, F. (1989). Peacemaking among primates. Cambridge, Mass.: Harvard University Press
Deykin, E. Y., & MacMahon, B. (1979). The incidence of seizures among children with autistic symptoms. American Journal of Psychiatry, 136, 860–864Google ScholarPubMed
Fein, D., Pennington, B., & Waterhouse, L. (1987). Implications of social deficits in autism for neurological dysfunction. In E. Schopler & G. B. Mesibov (Eds.), Neurobiological issues in autism (pp. 127–144). New York: PlenumCrossRef
Filipek, P. A., Richelme, C., Kennedy, D. N., Rademacher, J., Pitcher, D. A., Zidel, S. Y., & Caviness, V. S. (1992). Morphometric analysis of the brain in developmental language disorders and autism. Annals of Neurology, 32, 475Google Scholar
Fotheringham, J. B. (1991). Autism and its primary psychosocial and neurological deficit. Canadian Journal of Psychiatry, 36, 686–692CrossRefGoogle Scholar
George, M. S., Costa, D. C., Kouris, K., Ring, H. A., & Ell, P. J. (1992). Cerebral blood flow abnormalities in adults with infantile autism. Journal of Nervous and Mental Diseases, 180, 413–417CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin
Gottlieb, G. (2001). A developmental psychobiological systems view: Early formulation and current status. In S. Oyama & P. E. Griffiths (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 41–54). Cambridge, Mass.: MIT Press
Graham, Y. P., Heim, C., Goodman, S. H., Miller, A. H., & Nemeroff, C. B. (1999). The effects of neonatal stress on brain development: Implications for psychopathology. Development and Psychopathology, 11, 545–565CrossRefGoogle ScholarPubMed
Grossman, J. B., Carter, A., & Volkmar, F. R. (1997). Social behavior in autism. Annals of the New York Academy of Science, 807, 440–454CrossRefGoogle ScholarPubMed
Hadwin, J., Baron-Cohen, S., Howlin, P., & Hill, K. (1996). Can we teach children with autism to understand emotions, belief, or pretence? Development and Psychopathology, 8, 345–365CrossRefGoogle Scholar
Hadwin, J., Baron-Cohen, S., Howlin, P., & Hill, K. (1997). Does teaching Theory of Mind have an effect on the ability to develop conversation in children with autism? Journal of Autism and Developmental Disorders, 27, 519–537CrossRefGoogle ScholarPubMed
Harrison, D.W, Demaree, H. A., Shenal, B. V., & Everhart, D. E. (1998). EEG assisted neuropsychological evaluation of autism. International Journal of Neuroscience, 93, 133–140CrossRefGoogle ScholarPubMed
Hashimoto, T., Sasaki, M., Fukumizu, M., Hanaoka, S., Sugai, K., & Matsuda, H. (2000). Single-photon emission computed tomography of the brain in autism: Effect of the developmental level. Pediatric Neurology, 23, 416–420CrossRefGoogle ScholarPubMed
Hauser, S. L., DeLong, G. R., & Rosman, N. P. (1975). Pneumoencephalographic finding in the infantile autism syndrome: A correlation with temporal lobe disease. Brain, 98, 667–668CrossRefGoogle ScholarPubMed
Haznedar, M. M., Buchsbaum, M. S., Wei, T-C., Hof, P. R., Cartwright, C., Bienstock, C. A., & Hollander, E. (2000). Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. American Journal of Psychiatry, 157, 1994–2001CrossRefGoogle ScholarPubMed
Heavey, L., Phillips, W., Baron-Cohen, S., & Rutter, M. (2000). The Awkward Moments Test: A naturalistic measure of social understanding in autism. Journal of Autism & Developmental Disorders, 30, 225–236CrossRefGoogle ScholarPubMed
Heintz, A., Saunders, R. C., Kolachana, B. S., Jones, D. W., Gorey, J. G., Bachevalier, J., & Weinberger, D. R. (1999). Striatal dopamine receptors and transporters in monkeys with neonatal temporal limbic damage. Synapse, 32, 71–793.0.CO;2-Q>CrossRefGoogle Scholar
Hobson, R. P. (1986). The autistic child's appraisal of expressions of emotion. Journal of Child Psychology and Psychiatry, 27, 321–342CrossRefGoogle ScholarPubMed
Hof, P. R., Knabe, R., Bovier, P., & Bouras, C. (1991). Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathologica, 82, 321–326CrossRefGoogle Scholar
Howard, M. A., Cowell, P. E., Boucher, J., Broks, P., Mayes, A., Farrant, A., & Roberts, N. (2000). Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism. NeuroReport, 11, 2931–2935CrossRefGoogle ScholarPubMed
Humphrey, T. (1968). The development of the human amygdala during early embryonic life. Journal of Comparative Neurology, 132, 135–165CrossRefGoogle ScholarPubMed
Jacobson, R., Couteur, A., Howlin, P., & Rutter, M. (1988). Selective subcortical abnormalities in autism. Psychological Medicine, 18, 39–48CrossRefGoogle ScholarPubMed
Jaedicke, S., Storoschuk, S., & Lord, C. (1994). Subjective experience and causes of affect in high-functioning children and adolescents with autism. Development & Psychopathology. 6, 273–284CrossRefGoogle Scholar
Jiao, Q. (2001). Research on Theory of Mind in autism [Chinese]. Chinese Mental Health Journal, 15, 60–62Google Scholar
Joseph, R. M., & Tager-Flusberg, H. (1997). An investigation of attention and affect in children with autism and Down syndrome. Journal of Autism & Developmental Disorders. 27, 385–396CrossRefGoogle ScholarPubMed
Kamio, Y. (1998). Affective understanding in high-functioning autistic adolescents [Japanese]. Japanese Journal of Child & Adolescent Psychiatry. 39, 340–351Google Scholar
Kawasaki, Y., Yokota, K., Shinomiya, M., Shimizu, Y., & Niwa, S. (1997). Electroencephalographic paroxysmal activities in the frontal area emerged in middle childhood and during adolescence in a follow-up study of autism. Journal of Autism & Developmental Disorders, 27, 605–620CrossRefGoogle Scholar
Klin, A. S. (2000). Attributing social meaning to ambiguous visual stimuli in higher-functioning autism and Asperger syndrome: The Social Attribution Task. Child Psychology and Psychiatry, 41, 831–46CrossRefGoogle ScholarPubMed
Kling, A., & Green, P. C. (1967). Effects of neonatal amygdalectomy in the maternally reared and maternally deprived macaque. Nature, 213, 742–743CrossRefGoogle Scholar
Kordower, J. H., Piecinski, P., & Rakic, P. (1992). Neurogenesis of the amygdaloid nuclear complex in the rhesus monkey. Developmental Brain Research, 68, 9–15CrossRefGoogle ScholarPubMed
Lanska, D. J., & Lanska, M. J. (1993). Klüver-Bucy syndrome in juvenile neuronal ceroid lipofuscinosis. Journal of Child Neurology, 9, 67–69CrossRefGoogle Scholar
Loveland, K. (1991). Social affordances and interaction: Autism and the affordances of the human environment. Ecological Psychology, 3, 99–119CrossRefGoogle Scholar
Loveland, K. A. (2001). Toward an ecological theory of autism. In J. A. Burack, T. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theory and research (pp. 17–37). Hillsdale, N.J.: Erlbaum
Loveland, K., Pearson, D. A., Tunali-Kotoski, B., Ortegon, J., & Gibbs, M. C. (2001). Judgments of social appropriateness by children and adolescents with autism. Journal of Autism and Developmental Disorders, 31, 367–376CrossRefGoogle ScholarPubMed
Loveland, K., & Tunali, B. (1991). Social scripts for conversational interactions in autism and Down syndrome. Journal of Autism and Developmental Disorders, 21, 177–186CrossRefGoogle ScholarPubMed
Loveland, K., & Tunali-Kotoski, B. (1997). The school-aged child with autism. In Cohen, D., & Volkmar, F. (Eds.), The handbook of autism and pervasive developmental disorders. 2d Ed. (pp. 283–308). New York: Wiley
Loveland, K., Tunali-Kotoski, B., Pearson, D., Brelsford, K., Ortegon, J., & Chen, R. (1994). Imitation and expression of facial affect in autism. Development and Psychopathology, 6, 433–444CrossRefGoogle Scholar
Loveland, K., Tunali-Kotoski, B., Pearson, D., Chen, R., Brelsford, K., & Ortegon, J. (1995). Intermodal perception of affect by persons with autism or Down syndrome. Development and Psychopathology, 7, 409–418CrossRefGoogle Scholar
Málková, L., Mishkin, M., & Bachevalier, J. (1995). Long-term effects of selective neonatal temporal lobe lesions on learning and memory in monkeys. Behavioral Neuroscience, 109, 212–226CrossRefGoogle ScholarPubMed
Málková, L., Mishkin, M., Suomi, S. J., & Bachevalier, J. (1997). Socioemotional behavior in adult rhesus monkeys after early versus late lesions of the medial temporal lobe. Annals of the New York Academy of Science, 807, 538–540CrossRefGoogle ScholarPubMed
McGregor, E., Whiten, A., & Blackburn, P. (1998). Teaching theory of mind by highlighting intention and illustrating thoughts: A comparison of their effectiveness with 3-year olds and autistic individuals. British Journal of Developmental Psychology, 16, 281–300CrossRefGoogle Scholar
Meyer, S. E., Chrousos, G. P., & Gold, P. W. (1999). Major depression and the stress system: A lifespan perspective. Development and Psychopathology, 13, 565–580CrossRefGoogle Scholar
Minshew, N. J., Luna, B., & Sweeney, J. A. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology, 52, 917–922CrossRefGoogle Scholar
Mundo, E., Richter, M., Sam, F., Macciardi, F., & Kennedy, J. L. (2001). “5-HT-sub(1D) function and repetitive behaviors”: Reply. American Journal of Psychiatry, 158, 973CrossRefGoogle Scholar
New, A. S., Gelernter, J., Goodman, M, Mitropoulou, V., Koenigsberg, H., Silverman, J., & Siever, L. J. (2001). Suicide, impulsive aggression, and HTR1B genotype. Biological Psychiatry, 50, 62–65CrossRefGoogle ScholarPubMed
Nikolic, I., & Kostovic, I. (1986). Development of the lateral amygdaloid nucleus in the human fetus: transient presence of discrete cytoarchitectonic units. Anatomical Embryology, 174, 355–360CrossRefGoogle ScholarPubMed
Ochsner, K. N., & Lieberman, M. D. (2001). The emergence of social cognitive neuroscience. American Psychologist, 56, 717–734CrossRefGoogle ScholarPubMed
Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., & Sasaki, M. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123, 1838–1844CrossRefGoogle ScholarPubMed
Payton, J. B., & Minshew, N. J. (1987). Early appearance of partial complex seizures in children with infantile autism. Annals of Neurology, 22, 408Google Scholar
Phillips, W., Baron-Cohen, S., & Rutter, M. (1998). Understanding intention in normal development and in autism. British Journal of Developmental Psychology, 16, 337–348CrossRefGoogle Scholar
Pierce, K., Glad, K. S., & Schreibman, L. (1997). Social perception in children with autism: an attentional deficit? Journal of Autism and Developmental Disorders, 27, 265–282CrossRefGoogle Scholar
Post, R. M., Weiss, S. R. B., & Leverich, G. S. (1994). Recurrent affective disorder: Roots in developmental neurobiology and illness progression based on changes in gene expression. Development and Psychopathology, 6, 781–813CrossRefGoogle Scholar
Post, R. M., Weiss, S. R. B., Leverich, G. S., George, M. S., Frye, M., & Ketter, T. A. (1996). Developmental psychobiology of affective illness: Implications for early therapeutic intervention. Development and Psychopathology, 8, 273–305CrossRefGoogle Scholar
Prather, M. D., Lavenex, P., Mauldin-Jourdain, M. L., Mason, W. A., Capitanio, J. P., Mendoza, S. P., & Amaral, D. G. (2001). Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience, 106, 653–658CrossRefGoogle ScholarPubMed
Raleigh, M. J. (1995). Neural mechanisms supporting successful social decisions in simians. In Y. Christen, A. Damasion, & H. Damasio (Eds.), Neurobiology of decision making (pp. 63–82). Berlin: Springer
Rieffe, C., Terwogt, M., & Stockmann, L. (2000). Understanding atypical emotions among children with autism. Journal of Autism and Developmental Disorders, 30, 195–203CrossRefGoogle ScholarPubMed
Rossitch, E., & Oakes, W. J. (1989). Klüver-Bucy syndrome in a child with bilateral arachnoid cysts: report of a case. Neurosurgery, 24, 110–112CrossRefGoogle Scholar
Sánchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13, 419–449CrossRefGoogle ScholarPubMed
Saunders, R. C., Kolachana, B. S., Bachevalier, J., & Weinberger, D. R. (1998). Neonatal lesions of the medial temporal lobe disrupt prefrontal cortical regulation of striatal dopamine. Nature, 393, 169–171CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., Perez-Edgar, K., Hu, S., & Hamer, D. H. (2001). Association of DRD4 with attention problems in normal childhood development. Psychiatric Genetics, 11, 25–29CrossRefGoogle ScholarPubMed
Schore, A. N. (1996). The experience-dependent maturation of a regulatory system in the orbital prefrontal cortex and the origin of developmental psychopathology. Development and Psychopathology, 8, 59–87CrossRefGoogle Scholar
Schultz, R. T., Gauthier, I., Klin, A., Fulbright, R. K., Anderson, A. W., Volkmar, F., Skudlarski, P., Lacadie, C., Cohen, D. J., & Gore, J. C. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. Archives of General Psychiatry, 57(4): 331–340CrossRefGoogle ScholarPubMed
Schultz, R. T., Romanski, L.M, & Tsatsanis, K. D. (2000). Neurofunctional models of autistic disorder and Asperger syndrome: Clues from neuroimaging. In Ami Klin & Fred R. Volkmar (Eds.), Asperger syndrome (pp. 172–209). New York: Guilford Press
Seegmuller, C., Gras-Vincendon, A., & Bursztejn, C. (2000). Theory of mind tasks in pervasive developmental disorders: Interest for diagnosis [French]. Original title: Intérêt diagnostique des épreuves de théorie de l'esprit dans les troubles envahissants du développement. Annales Médico-Psychologiques, 158, 577–580Google Scholar
Serra, M., Minderaa, R. B., Geert, P. L., & Jackson, A. E. (1999). Social-cognitive abilities in children with lesser variants of autism: skill deficits or failure to apply skills? European Child and Adolescent Psychiatry, 8, 301–11CrossRefGoogle ScholarPubMed
Siegel, B. V., Nuechterlein, K. H., Abel, L., Wu, J. C., & Buchsbaum, M. S. (1995). Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophrenia Research, 17, 85–94CrossRefGoogle ScholarPubMed
Sigman, M. D., Kasari, C., Kwon, J. H., & Yirmiya, N. (1992). Responses to the negative emotions of others by autistic, mentally retarded, and normal children. Child Development, 63, 796–807CrossRefGoogle ScholarPubMed
Snow, M. E., Hertzig, M. E., & Shapiro, T. (1987). Expression of emotion in young autistic children. Journal of the American Academy of Child and Adolescent Psychology, 26, 836–838CrossRefGoogle ScholarPubMed
Starkstein, S. E., Vazquez, S., Vrancic, D., Nanclares, V., Manes, F., Piven, J., & Plebst, C. (2000). SPECT findings in mentally retarded autistic individuals. Journal of Neuropsychiatry and Clinical Neuroscience, 12, 370–375CrossRefGoogle ScholarPubMed
Thompson, C. I. (1981). Long-term behavioral development of rhesus monkeys after amygdalectomy in infancy. In Y. Ben Ari (Ed.), The amygdaloid complex (pp. 259–270). Amsterdam: Elsevier
Tonsgard, J. H., Harwicke, N., & Levine, S. C. (1987). Klüver-Bucy syndrome in children. Pediatric Neurology, 3, 162–165CrossRefGoogle ScholarPubMed
Turri, M. G., Datta, S. R., DeFries, J., Henderson, N. D., & Flint, J. (2001). QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Current Biology, 11, 725–734CrossRefGoogle ScholarPubMed
Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2, 435–443Google ScholarPubMed
Webster, M. J., Ungerleider, L. G., & Bachevalier, J. (1991). Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. Journal of Neuroscience, 11, 1095–1116CrossRefGoogle ScholarPubMed
Weeks, S., & Hobson, R. P. (1987). The salience of facial expression for autistic children. Journal of Child Psychology and Psychiatry, 28, 137–151CrossRefGoogle ScholarPubMed
Wing, L., & Attwood, A. (1987). Syndromes of autism and atypical development. In D. Cohen, A. Donellen, & R. Paul (Eds.), Handbook of autism and pervasive developmental disorders (pp. 3–19). New York: Wiley-Liss
Wing, L., & Gould, J. (1979). Severe impairments of social interaction and associated abnormalities in children: Epidemiology and classification. Journal of Autism and Developmental Disorders, 9, 11–29CrossRefGoogle ScholarPubMed
Woo, T. U., Pucak, M. L., Kye, C. H., Matus, C. V., & Lewis, D. A. (1997). Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience, 80, 1149–1158CrossRefGoogle ScholarPubMed
Yirmiya, N., Kasari, C., Sigman, M., & Mundy, P. (1989). Facial expressions of affect in autistic, mentally retarded, and normal children. Journal of Child Psychology and Psychiatry, 30, 725–736CrossRefGoogle ScholarPubMed
Yirmiya, N., Pilowsky, T., Nemanov, L., Arbelle, S., Feinsilver, T., Fried, I., & Ebstein, R. P. (2001). Analysis of three coding region polymorphisms in autism: Evidence for an association with the serotonin transporter. In E. Schopler & N. Yirmiya (Eds.). The research basis for autism intervention (pp. 91–101). New York: Kluwer Academic/Plenum Publishers
Yirmiya, N., Sigman, M., Kasari, C., & Mundy, P. (1992). Empathy and cognition in high-functioning children with autism. Child Development, 63, 150–160CrossRefGoogle ScholarPubMed
Zilbovicius, M., Garreau, B., Samson, Y., Remy, P., Barthelemy, C., Syrota, A., & Lelord, G. (1995). Delayed maturation of the frontal cortex in childhood autism. American Journal of Psychiatry, 152, 248–252Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×