Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-24T21:27:30.351Z Has data issue: false hasContentIssue false

18 - X chromosome, estrogen, and brain development: implications for schizophrenia

Published online by Cambridge University Press:  04 August 2010

Michael Craig
Affiliation:
Institute of Psychiatry, King's College, London, UK
William Cutter
Affiliation:
Institute of Psychiatry, King's College, London, UK
Ray Norbury
Affiliation:
Institute of Psychiatry, King's College, London, UK
Declan Murphy
Affiliation:
Institute of Psychiatry, King's College, London, UK
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

The neurodevelopmental theory is now regarded by many psychiatrists as a dominant explanatory model of schizophrenia. In order to evaluate this model critically, it is important to understand how the normal brain develops and changes across the lifespan. The important factors, reviewed in this chapter, include the sex chromosomes and sex steroids. The chapter offers evidence that sex chromosomes and sex steroids (in particular estrogen) significantly modulate the structure and function of normal brain, and this is considered when forming developmental theories of schizophrenia, when attempting to explain sex differences in schizophrenia, and when considering the role of sex steroids in the genesis and treatment of schizophrenia. It suggests that estrogen and the chromosome play a modulatory role in brain maturation, and their mechanism of action needs to be understood in order to place the neurodevelopmental theory of schizophrenia in context.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C., Smith, M. R., Jacoby, C. G., Dennert, J. W., Olsen, S. A. (1982). Ventricular enlargement in schizophrenia: definition and prevalence. Am J Psychiatry 139: 292–296Google ScholarPubMed
Andreasen, N. C., Nasrallah, H. A., Dunn, et al. (1986). Structural abnormalities in the frontal system in schizophrenia: a magnetic resonance imaging study. Arch Gen Psychiatry 43: 136–144CrossRefGoogle ScholarPubMed
Andreasen, N. C., Ehrhardt, J. C., Swayze, V. W. IIIet al. (1990a). Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities. Arch Gen Psychiatry 47: 35–44CrossRefGoogle Scholar
Andreasen, N. C., Swayze, V. W. III, Flaum, M.et al. (1990b). Ventricular enlargement in schizophrenia evaluated with computed tomographic scanning. Effects of gender, age, and stage of illness. Arch Gen Psychiatry 47: 1008–1015CrossRefGoogle Scholar
Bedard, P. J., Boucher, R., Daigle, M., di Paolo, T. (1984). Similar effect of estradiol and haloperidol on experimental tardive dyskinesia in monkeys. Psychoneuroendocrinology 9: 375–379CrossRefGoogle ScholarPubMed
Benes, F. M. (1998). Brain development, VII. Human brain growth spans decades. Am J Psychiatry 155: 1489CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51: 477–484CrossRefGoogle Scholar
Bennett-Clarke, C. A., Leslie, M. J., Lane, R. D., Rhoades, R. W. (1994). Effect of serotonin depletion on vibrissa-related patterns of thalamic afferents in the rat's somatosensory cortex. J Neurosci 14: 7594–7607CrossRefGoogle ScholarPubMed
Bennett-Clarke, C. A., Chiaia, N. L., Rhoades, R. W. (1996). Thalamocortical afferents in rat transiently express high-affinity serotonin uptake sites. Brain Res 733: 301–306CrossRefGoogle ScholarPubMed
Blue, M. E., Erzurumlu, R. S., Jhaveri, S. (1991). A comparison of pattern formation by thalamocortical and serotonergic afferents in the rat barrel field cortex. Cereb Cortex 1: 380–389CrossRefGoogle ScholarPubMed
Brinton, R. D. (1993). 17-Estradiol induction of filopodial growth in cultured hippocampal neurons within minutes of exposure. Mol Cell Neurosci 4: 36–46CrossRefGoogle Scholar
Brinton, R. D. (2001). Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer's disease: recent insights and remaining challenges. Learn Mem 8: 121–133CrossRefGoogle ScholarPubMed
Cases, O., Seif, I., Grimsby, J., Gaspar, P.et al. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766CrossRefGoogle ScholarPubMed
Cases, O., Vitalis, T., Seif, I.et al. (1996). Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16: 297–307CrossRefGoogle ScholarPubMed
Castle, D. J., Murray, R. M. (1993). The epidemiology of late-onset schizophrenia. Schizophr Bull 19: 691–700CrossRefGoogle ScholarPubMed
Castle, D. J., Wessely, S., Murray, R. M. (1993). Sex and schizophrenia: effects of diagnostic stringency, and associations with and premorbid variables. Br J Psychiatry 162: 658–664CrossRefGoogle ScholarPubMed
Coger, R. W., Serafetinides, E. A. (1990). Schizophrenia, corpus callosum, and interhemispheric communication: a review. Psychiatr Res 34: 163–184CrossRefGoogle ScholarPubMed
D'Amato, R. J., Blue, M. E., Largent, B. L.et al. (1987). Ontogeny of the serotonergic projection to rat neocortex: transient expression of a dense innervation to primary sensory areas. Proc Natl Acad Sci USA 84: 4322–4326CrossRefGoogle ScholarPubMed
Bellis, M. D., Keshavan, M. S., Beers, S. R.et al. (2001). Sex differences in brain maturation during childhood and adolescence. Cereb Cortex 11: 552–557CrossRefGoogle ScholarPubMed
DeLisi, L. E., Devoto, M., Lofthouse, R.et al. (1994). Search for linkage to schizophrenia on the X and Y chromosomes. Am J Med Genet 54: 113–121CrossRefGoogle ScholarPubMed
Dluzen, D. E., McDermott, J. L., Liu, B. (1996). Estrogen alters MPTP-induced neurotoxicity in female mice: effects on striatal dopamine concentrations and release. J Neurochem 66: 658–666CrossRefGoogle ScholarPubMed
Dumontier, M., Hocht, P., Mintert, U., Faix, J. (2000). Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium. J Cell Sci 113: 2253–2265Google ScholarPubMed
Egan, M. F., Goldberg, T. E., Kolachana, B. S.et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922CrossRefGoogle ScholarPubMed
Fitch, R. H., Denenberg, V. H. (1998). A role for ovarian hormones in sexual differentiation of the brain. Behav Brain Sci 21: 311–327; discussion 327–352CrossRefGoogle ScholarPubMed
Flaum, M., Arndt, S., Andreasen, N. C. (1990). The role of gender in studies of ventricle enlargement in schizophrenia: a predominantly male effect. Am J Psychiatry 147: 1327–1332Google ScholarPubMed
Foreman, M. M., Porter, J. C. (1980). Effects of catechol estrogens and catecholamines on hypothalamic and corpus striatal tyrosine hydroxylase activity. J Neurochem 34: 1175–1183CrossRefGoogle ScholarPubMed
Freund, L. S., Reiss, A. L., Hagerman, R., Vinogradov, S. (1992). Chromosome fragility and psychopathology in obligate female carriers of the fragile X syndrome. Arch Gen Psychiatry 49: 54–60CrossRefGoogle Scholar
Fryns, J. P. (1986). The female and the fragile X A study of 144 obligate female carriers. Am J Med Genet 23: 157–169CrossRefGoogle Scholar
Giedd, J. N., Vaituzis, A. C., Hamburger, S. D.et al. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J Comp Neurol 366: 223–2303.0.CO;2-7>CrossRefGoogle ScholarPubMed
Giedd, J. N., Blumenthal, J., Jeffries, N. O.et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2: 861–863CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S., Brown, R. M. (1982). Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Brain Res 256: 339–349CrossRefGoogle ScholarPubMed
Gordon, J. H., Borison, R. L., Diamond, B. I. (1980). Modulation of dopamine receptor sensitivity by estrogen. Biol Psychiatry 15: 389–396Google ScholarPubMed
Gur, R. E., Mozley, P. D., Shtasel, D. L.et al. (1994). Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J Psychiatry 151: 343–350Google ScholarPubMed
Haas, G. L., Hien, D. A., Waked, W.et al. (1989). Sex differences in schizophrenia. Schizophr Res 2: 11CrossRefGoogle Scholar
Haas, G. L., Sweeney, J. A., Hien, D. A., Goldman, D., Deck, M. (1991). Gender differences in schizophrenia. Schizophr Res 4: 277CrossRefGoogle Scholar
Hafner, H., Riecher-Rossler, A., Maurer, K., Fatkenheuer, B., Loffler, W. (1993). Generating and testing a causal explanation of the gender difference in age at first onset of schizophrenia. Psychol Med 23: 925–940CrossRefGoogle ScholarPubMed
Hafner, H., Maurer, K., Loffler, W.et al. (1994). The epidemiology of early schizophrenia. Influence of age and gender on onset and early course. Br J Psychiatry Suppl 23: 29–38Google Scholar
Hafner, H., An der Heiden, W., Behrens, S.et al. (1998a). Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophr Bull 24: 99–113CrossRefGoogle Scholar
Hafner, H., Maurer, K., Loffler, W.et al. (1998b). The ABC Schizophrenia Study: a preliminary overview of the results. Soc Psychiatry Psychiatr Epidemiol 33: 380–386Google Scholar
Hagerman, R. J. (1987). Fragile X syndrome. Curr Probl Pediatr 17: 627–674Google ScholarPubMed
Hallonquist, J. D., Seeman, M. V., Lang, M., Rector, N. A. (1993). Variation in symptom severity over the menstrual cycle of schizophrenics. Biol Psychiatry 33: 207–209CrossRefGoogle ScholarPubMed
Hampson, E. (1990). Variations in sex-related cognitive abilities across the menstrual cycle. Brain Cogn 14: 26–43CrossRefGoogle ScholarPubMed
Hariri, A. R., Mattay, V. S., Tessitore, A.et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science 297: 400–403CrossRefGoogle ScholarPubMed
Harvey, I., Williams, M., Toone, B. K.et al. (1990). The ventricular–brain ratio (VBR) in functional psychoses: the relationship of lateral ventricular and total intracranial area. Psychol Med 20: 55–62CrossRefGoogle ScholarPubMed
Hedner, J., Lundell, K. H., Breese, G. R., Mueller, R. A., Hedner, T. (1986). Developmental variations in CSF monoamine metabolites during childhood. Biol Neonate 49: 190–197CrossRefGoogle ScholarPubMed
Herlenius, E., Lagercrantz, H. (2001). Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65: 21–37CrossRefGoogle ScholarPubMed
Howard, R., Rabins, P. V., Seeman, M. V., Jeste, D. V.et al. (2000). Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. Am J Psychiatry 157: 172–178CrossRefGoogle Scholar
Jablensky, A., Sartorius, N., Ernberg, G. (1992). Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization Ten-Country Study. Psychol Med Monograph20
Kendell, R. E., Chalmers, J. C., Platz, C. (1987). Epidemiology of puerperal psychoses. Br J Psychiatry 150: 662–673CrossRefGoogle ScholarPubMed
Kulkarni, J., Riedel, A., Castella, A. R.et al. (2001). Estrogen: a potential treatment for schizophrenia. Schizophr Res 48: 137–144CrossRefGoogle Scholar
Lauder, J. M., Krebs, H. (1978). Serotonin as a differentiation signal in early neurogenesis. Dev Neurosci 1: 15–30CrossRefGoogle ScholarPubMed
Lauriello, J., Hoff, A., Wieneke, M. H.et al. (1997). Similar extent of brain dysmorphology in severely ill women and men with schizophrenia. Am J Psychiatry 154: 819–825Google ScholarPubMed
Lebrand, C., Cases, O., Adelbrecht, C.et al. (1996). Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17: 823–835CrossRefGoogle ScholarPubMed
Lerer, B., Gelfin, Y., Shapira, B. (1999). Neuroendocrine evidence for age-related decline in central serotonergic function. Neuropsychopharmacology 21: 321–322Google ScholarPubMed
Leung, A., Chue, P. (2000). Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 401: 3–38CrossRefGoogle ScholarPubMed
Levallois, C., Valence, C., Baldet, P., Privat, A. (1997). Morphological and morphometric analysis of serotonin-containing neurons in primary dissociated cultures of human rhombencephalon: a study of development. Brain Res Dev Brain Res 99: 243–252CrossRefGoogle ScholarPubMed
Lidow, M. S., Goldman-Rakic, P. S., Rakic, P. (1991). Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci USA 88: 10218–10221CrossRefGoogle ScholarPubMed
Lindamer, L. A., Lohr, J. B., Harris, M. J., Jeste, D. V. (1997). Gender, estrogen, and schizophrenia. Psychopharmacol Bull 33: 221–228Google Scholar
Maki, P. M., Resnick, S. M. (2000). Longitudinal effects of estrogen replacement therapy on PET cerebral blood flow and cognition. Neurobiol Aging 21: 373–383CrossRefGoogle ScholarPubMed
Maki, P. M., Resnick, S. M. (2001). Effects of estrogen on patterns of brain activity at rest and during cognitive activity: A review of neuroimaging studies. Neuroimage 14: 789–801CrossRefGoogle ScholarPubMed
McInnis, M. G., McMahon, F. J., Chase, G. A.et al. (1993). Anticipation in bipolar affective disorder. Am J Hum Genet 53: 385–390Google ScholarPubMed
Meltzer, C. C., Smith, G., DeKosky, S. T.et al. (1998). Serotonin in aging, late-life depression, and Alzheimer's disease: the emerging role of functional imaging. Neuropsychopharmacology 18: 407–430CrossRefGoogle ScholarPubMed
Morris, A. G., Gaitonde, E., McKenna, P. J., Mollon, J. D., Hunt, D. M. (1995). CAG repeat expansions and schizophrenia: association with disease in females and with early age-at-onset. Hum Mol Genet 4: 1957–1961CrossRefGoogle ScholarPubMed
Moses, E. L., Drevets, W. C., Smith, G.et al. (2000). Effects of estradiol and progesterone administration on human serotonin 2A receptor binding: a PET study. Biol Psychiatry 48: 854–860CrossRefGoogle ScholarPubMed
Murphy, D. G., DeCarli, C., Daly, E.et al. (1993). X-chromosome effects on female brain: a magnetic resonance imaging study of Turner's syndrome. Lancet 342: 1197–1200CrossRefGoogle ScholarPubMed
Murphy, D. G., Allen, G., Haxby, J. V.et al. (1994). The effects of sex steroids, and the X chromosome, on female brain function: a study of the neuropsychology of adult Turner syndrome. Neuropsychologia 32: 1309–1323CrossRefGoogle ScholarPubMed
Murphy, D. G., DeCarli, C., McIntosh, A. R.et al. (1996). Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53: 585–594CrossRefGoogle Scholar
Murphy, D. G., Mentis, M. J., Pietrini, P.et al. (1997). A PET study of Turner's syndrome: effects of sex steroids and the X chromosome on brain. Biol Psychiatry 41: 285–298CrossRefGoogle ScholarPubMed
Nasrallah, H. A., Schwarzkopf, S. B., Olson, S. C., Coffman, J. A. (1990). Gender differences in schizophrenia on MRI brain scans. Schizophr Bull 16: 205–210CrossRefGoogle ScholarPubMed
Nopoulos, P., Flaum, M., Andreasen, N. C. (1997). Sex differences in brain morphology in schizophrenia. Am J Psychiatry 154: 1648–1654CrossRefGoogle Scholar
O'Connell, P., Woodruff, P. W. R., Wright, I., Jones, P., Murray, R. M. (1997). Developmental insanity or dementia praecox: was the wrong concept adopted?Schizophr Res 23: 97–106CrossRefGoogle ScholarPubMed
O'Donovan, M. C., Guy, C., Craddock, N.et al. (1995). Expanded CAG repeats in schizophrenia and bipolar disorder. Nat Genet 10: 380–381CrossRefGoogle ScholarPubMed
Phillips, S. M., Sherwin, B. B. (1992). Effects of estrogen on memory function in surgically menopausal women. Psychoneuroendocrinology 17: 485–495CrossRefGoogle ScholarPubMed
Phoenix, C. H., Goy, R. W., Gerall, A. A., Young, W. C. (1959). Organizing action of prenatally administered testosterone proprionate on the tissues mediating behavior in the guinea pig. Endocrinology 65: 369–382CrossRefGoogle Scholar
Riecher-Rossler, A., Hafner, H., Dutsch-Strobel, A.et al. (1994). Further evidence for a specific role of estradiol in schizophrenia?Biol Psychiatry 36: 492–494CrossRefGoogle Scholar
Robertson, D. M., Amelsvoort, T., Daly, E.et al. (2001). Effects of estrogen replacement therapy on human brain aging: an in vivo 1H MRS study. Neurology 57: 2114–2117CrossRefGoogle Scholar
Salem, J. E., Kring, A. M. (1998). The role of gender differences in the reduction of etiologic heterogeneity in schizophrenia. Clin Psychol Rev 18: 795–819CrossRefGoogle Scholar
Seeman, M. V., Lang, M. (1990). The role of estrogens in schizophrenia gender differences. Schizophr Bull 16: 185–194CrossRefGoogle ScholarPubMed
Seifert, W. E. Jr., Foxx, J. L., Butler, I. J. (1980). Age effect on dopamine and serotonin metabolite levels in cerebrospinal fluid. Ann Neurol 8: 38–42CrossRefGoogle ScholarPubMed
Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R.et al. (1999). Effect of estrogen on brain activation patterns in postmenopausal women during working memory tasks. J Am Med Assoc 281: 1197–1202CrossRefGoogle ScholarPubMed
Shelton, R. C., Karson, C. N., Doran, A. R.et al. (1988). Cerebral structural pathology in schizophrenia: evidence for a selective prefrontal cortical defect. Am J Psychiatry 145: 154–163Google ScholarPubMed
Shenton, M. E., Kikinis, R., Jolesz, F. A.et al. (1992). Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 327: 604–612CrossRefGoogle ScholarPubMed
Sherwin, B. B. (1988). Estrogen and/or androgen replacement therapy and cognitive functioning in surgically menopausal women. Psychoneuroendocrinology 13: 345–357CrossRefGoogle ScholarPubMed
Skuse, D. H., James, R. S., Bishop, D. V.et al. (1997). Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387: 705–708CrossRefGoogle ScholarPubMed
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24: 417–463CrossRefGoogle ScholarPubMed
Spitzer, R., Endicott, J., Robins, E. (1978). Research Diagnostic Criteria (RDC): rationale and reliability. Arch Gen Psychiatry 35: 773–782CrossRefGoogle ScholarPubMed
Sundstrom, E., Kolare, S., Souverbie, F.et al. (1993). Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Dev Brain Res 75: 1–12CrossRefGoogle ScholarPubMed
Takahashi, H., Nakashima, S., Ohama, E., Takeda, S., Ikuta, F. (1986). Distribution of serotonin-containing cell bodies in the brainstem of the human fetus determined with immunohistochemistry using antiserotonin serum. Brain Dev 8: 355–365CrossRefGoogle ScholarPubMed
Toran-Allerand, C. D. (1996). The estrogen/neurotrophin connection during neural development: is co-localization of estrogen receptors with the neurotrophins and their receptors biologically relevant?Dev Neurosci 18: 36–48CrossRefGoogle ScholarPubMed
Travis, M. J., Mulligan, O., Mulligan, R. S.et al. (1999). Preliminary investigation of the effect of oestradiol treatment on cortical 5–HT2A receptor binding: a single photon emission tomography (SPET) study using 123I-5-I-R91150. Neuroimage 9: S672Google Scholar
Amelsvoort, T. A. M. J., Daly, E.Robertson, D. M. R.et al. (2001a). Structural brain abnormalities associated with deletion of chromosome 22qaa: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 178: 412–419CrossRefGoogle Scholar
Amelsvoort, T. A. M. J., Abel, K. M., Robertson, D. M. R.et al. (2001b). Prolactin response to d-fenfluramine in postmenopausal women on and off ERT: comparison with young women. Psychoneuroendocrinology 26: 493–502CrossRefGoogle Scholar
Vazquez-Barquero, J. L., Cuesta Nunez, M. J., Quintana Pando, F.et al. (1995). Structural abnormalities of the brain in schizophrenia: sex differences in the Cantabria First Episode of Schizophrenia Study. Psychol Med 25: 1247–1257CrossRefGoogle ScholarPubMed
Walker, E. F. (1994). Developmentally moderated expressions of the neuropathology underlying schizophrenia. Schizophr Bull 20: 453–480CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P. M. (2001). Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56: 479–485CrossRefGoogle ScholarPubMed
Williams, A. O., Reveley, M. A., Kolakowska, T., Ardern, M., Mandelbrote, B. M. (1985). Schizophrenia with good and poor outcome. II: Cerebral ventricular size and its clinical significance. Br J Psychiatry 146: 239–246CrossRefGoogle ScholarPubMed
Wong, D. F., Wagner, H. N. Jr., Dannals, R. F.et al. (1984). Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226: 1393–1396CrossRefGoogle ScholarPubMed
Wong, D. F., Broussolle, E. P., Wand, G.et al. (1988). In vivo measurement of dopamine receptors in human brain by positron emission tomography. Age and sex differences. Ann N Y Acad Sci 515: 203–214CrossRefGoogle ScholarPubMed
Woolley, C. S., McEwen, B. S. (1994). Estradiol regulates hippocampal dendritic spine density via an N-methyl-d-aspartate receptor-dependent mechanism. J Neurosci 14: 7680–7687CrossRefGoogle ScholarPubMed
Yan, W., Wilson, C. C., Haring, J. H. (1997). Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Res Dev Brain Res 98: 177–184CrossRefGoogle ScholarPubMed
Yu, X.-M., Askalan, R., Keil, II, G. J., Salter, M. W. (1997). NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275: 674–678CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×