Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T16:11:38.871Z Has data issue: false hasContentIssue false

12 - Transcriptomes in schizophrenia: assessing altered gene expression with microarrays

Published online by Cambridge University Press:  04 August 2010

David A. Lewis
Affiliation:
University of Pittsburgh, Pittsburgh, USA
Karoly Mirnics
Affiliation:
University of Pittsburgh, Pittsburgh, USA
Pat Levitt
Affiliation:
Vanderbilt University, Nashville, USA
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

This chapter reviews the current status of the technology to assess transcriptomes, its associated strengths and limitations, and initial findings resulting from the use of the approaches to study schizophrenia. Two types of microarray platform have been used in studies of schizophrenia: complementary DNA (cDNA) microarrays and synthetic oligonucleotide probe arrays. The study of gene expression in human brain tissue, the area of interest in schizophrenia, requires the use of postmortem human brain specimens. In postmortem brain specimens from subjects with schizophrenia, a difference in the expression level of one or a cluster of genes may have several different meanings. The application of transcriptome-based methods to studies of the molecular neuropathology of schizophrenia is clearly in their infancy, and like newborns they offer great promise for the future. However, careful rearing is essential to fulfill this promise.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbarian, S., Kim, J. J., Potkin, S. G.et al. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 52: 258–266CrossRefGoogle ScholarPubMed
Arnold, S. E., Trojanowski, J. Q., Gur, R. E.et al. (1998). Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 55: 225–232CrossRefGoogle Scholar
Berman, K. F., Zec, R. F., Weinberger, D. R. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention and mental effort. Arch Gen Psychiatry 43: 126–135CrossRefGoogle Scholar
Branca, M. (2003). Genetics and medicine: putting gene arrays to the test. Science 300: 238CrossRefGoogle ScholarPubMed
Brown, P. O., Bottenstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nat Genet 21S: 33–37CrossRefGoogle Scholar
Brzustowicz, L. M., Hodgkinson, K. A., Chow, E. W. C., Honer, W. G., Bassett, A. S. (2000). Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 288: 678–682CrossRefGoogle Scholar
Buchsbaum, M. S., Haier, R. J., Potkin, S. G.et al. (1992). Frontrostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49: 935–942CrossRefGoogle Scholar
Burrone, J., O'Byren, M., Murthy, V. N. (2002). Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. Nature 420: 414–418CrossRefGoogle ScholarPubMed
Cheung, V. G., Morley, M., Aguilar, F.et al. (1999). Making and reading microarrays. Nat Genet 21S: 20–32Google Scholar
Chowdari, K. V., Mirnics, K., Semwal, P.et al. (2002). Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 11: 1373–1380CrossRefGoogle Scholar
DeRisi, J., Iyer, V. R., Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686CrossRefGoogle ScholarPubMed
DeRisi, J., Penland, L., Brown, P. O.et al. (1996). Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14: 457–460Google ScholarPubMed
Vries, L., Zheng, B., Fischer, T., Elenko, E., Farquhar, M. G. (2000). The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40: 235–271CrossRefGoogle ScholarPubMed
Duggan, D. J., Bittner, M., Chen, Y., Meltzer, P., Trent, J. M. (1999). Expression profiling using cDNA microarrays. Nat Genet 21S: 10–14CrossRefGoogle Scholar
Eastwood, S. L., McDonald, B., Burnet, P. W. J.et al. (1995). Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Mol Brain Res 29: 211–223CrossRefGoogle Scholar
Glantz, L. A., Lewis, D. A. (1997). Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specificity. Arch Gen Psychiatry 54: 943–952CrossRefGoogle ScholarPubMed
Glantz, L. A., Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57: 65–73CrossRefGoogle Scholar
Hakak, Y., Walker, J. R., Li, C.et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98: 4746–4751CrossRefGoogle ScholarPubMed
Harrison, P. J., Heath, P. R., Eastwood, S. L.et al. (1995). The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 200: 151–154CrossRefGoogle ScholarPubMed
Hashimoto, T., Volk, D. W., Buchheit, S. E., Lewis, D. A. (2002). Expression of BDNF and trkB mRNAs in prefrontal cortex of subjects with schizophrenia. Soc Neurosci Abstr 28: 703. 7Google Scholar
Hashimoto, T., Volk, D. W., Eggan, S. M.et al. (2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 23: 6315–6326CrossRefGoogle Scholar
Hemby, S. E., Ginsberg, S. D., Brunk, B.et al. (2002). Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch Gen Psychiatry 59: 631–640CrossRefGoogle ScholarPubMed
Hof, P. R., Haroutunian, V., Friedrich, V. L. Jr.et al. (2003). Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 53: 1075–1085CrossRefGoogle Scholar
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res 163: 195–205Google ScholarPubMed
Kamme, F., Salunga, R., Yu, J.et al. (2003). Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 23: 3607–3615CrossRefGoogle ScholarPubMed
Lewis, D. A. (2002). The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 26: 143–154CrossRefGoogle ScholarPubMed
Lewis, D. A., Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25: 409–432CrossRefGoogle ScholarPubMed
Lewis, D. A., Lieberman, J. A. (2000). Catching up on schizophrenia: natural history and neurobiology. Neuron 28: 325–334CrossRefGoogle ScholarPubMed
Lidow, M. S., Goldman-Rakic, P. S., Rakic, P., Innis, R. B. (1989). Dopamine D(2) receptors in the cerebral cortex: distribution and pharmacological characterization with [(3)H]raclopride. Proc Natl Acad Sci USA 86: 6412–6416CrossRefGoogle Scholar
Lipshutz, R. J., Fodor, S. P. A., Gingeras, T. R., Lockhart, D. J. (1999). High density synthetic oligonucleotide arrays. Nat Genet 21S: 20–24CrossRefGoogle Scholar
Lockhart, D. J., Barlow, C. (2001). DNA arrays and gene expression analysis in the brain. In Methods in Genomic Neuroscience, ed. H. R. Chin, S. Moldin. New York: CRC Press, pp. 143–170CrossRef
Lockhart, D. J., Dong, H., Byrne, M. C.et al. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14: 1675–1680CrossRefGoogle ScholarPubMed
Luo, L., Salunga, R. C., Guo, H.et al. (1999). Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5: 117–122CrossRefGoogle ScholarPubMed
Middleton, F. A., Mirnics, K., Pierri, J. N., Lewis, D. A., Levitt, P. (2002). Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22: 2718–2729CrossRefGoogle Scholar
Mimmack, M. L., Ryan, M., Baba, H.et al. (2002). Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 99: 4680–4685CrossRefGoogle Scholar
Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67CrossRefGoogle ScholarPubMed
Mirnics, K., Middleton, F. A., Stanwood, G. D., Lewis, D. A., Levitt, P. (2001a). Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6: 293–301CrossRefGoogle Scholar
Mirnics, K., Middleton, F. A., Lewis, D. A., Levitt, P. (2001b). Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24: 479–486CrossRefGoogle Scholar
Pongrac, J., Middleton, F. A., Lewis, D. A., Levitt, P., Mirnics, K. (2002). Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem Res 27: 1049–1063CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N., Goldman-Rakic, P. S. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232: 232–235CrossRefGoogle ScholarPubMed
Schena, M., Davis, R. W. (1999). Microgenes, genomes and chips. In DNA Microarrays: A Practical Approach, ed. M. Schena. Oxford: Oxford University Press, pp. 1–16
Schena, M., Shalon, D., Davis, R. W., Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470CrossRefGoogle ScholarPubMed
Schena, M., Shalon, D., Heller, R.et al. (1996). Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad SciUSA 93: 10614–10619CrossRefGoogle ScholarPubMed
Schneider, A., Montague, P., Griffiths, I.et al. (1992). Uncoupling of hypomyelination and glial cell death by a mutation in the proteolipid protein gene. Nature 358: 758–761CrossRefGoogle ScholarPubMed
Sklar, P. (2001). Microarray analysis of the Stanley brain collection. Abstract. In 7th Symposium on the Neurobiology and Neuroimmunology of Schizophrenia and Bipolar Disorder. Washington, DC: Stanley Foundation
Southern, E., Mir, K., Shchepinov, M. (1999). Molecular interactions on microarrays. Nat Genet 21: 5–9CrossRefGoogle ScholarPubMed
Vawter, M. P., Barrett, T., Cheadle, C.et al. (2001). Application of cDNA microarrays to examine gene expression differences in schizophrenia. Res Bull 55: 641–650CrossRefGoogle Scholar
Vawter, M. P., Crook, J. M., Hyde, T. M.et al. (2002). Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 58: 11–20CrossRefGoogle ScholarPubMed
Volk, D. W., Austin, M. C., Pierri, J. N., Sampson, A. R., Lewis, D. A. (2000). Decreased GAD67 mRNA expression in a subset of prefrontal cortical GABA neurons in subjects with schizophrenia. Arch Gen Psychiatry 57: 237–245CrossRefGoogle Scholar
Waterworth, D. M., Bassett, A. S., Brzustowicz, L. M. (2002). Recent advances in the genetics of schizophrenia. Cell Mol Life Sci 59: 331–348CrossRefGoogle Scholar
Weickert, C. S., Hyde, T. M., Lipska, B. K.et al. (2003). Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 8: 592–610CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×