Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T07:43:20.175Z Has data issue: false hasContentIssue false

6 - Do degenerative changes operate across diagnostic boundaries? The case for glucocorticoid involvement in major psychiatric disorders

Published online by Cambridge University Press:  04 August 2010

Carmine M. Pariante
Affiliation:
Institute of Psychiatry, King's College, London, UK
David Cotter
Affiliation:
Royal College of Surgeons, Dublin, Ireland
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

Crucial supportive evidence for the theory was given by studies showing that classical degenerative brain changes were largely absent, by the presence of microscopic brain changes indicative of abnormal brain development, and by the absence of clear evidence for progressive ventricular dilatation among schizophrenia subjects. It is possible that the microscopic neuropathological changes described in schizophrenia may be vulnerable factors for schizophrenia. Alternatively, they could be an intrinsic component or a consequence of illness. Neuropathological studies cannot tell which interpretation is correct. However, there are some important similarities in the neuropathology of schizophrenia, major depressive disorder (MDD) and bipolar disorder (BPD), which suggest that a common process of change is involved in each disorder. There are several lines of investigation that support the view that glucocorticoid-related neurotoxicity may be implicated in depression and schizophrenia. The glial deficit found in these disorders may also relate to glucocorticoid effects.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, L. L., Bartzokis, G., Grieder, T., Curran, J., Mintz, J. (1998). Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiatry 55: 663–664Google ScholarPubMed
Avitsur, R., Stark, J. L., Sheridan, J. F. (2001). Social stress induces glucocorticoid resistance in subordinate animals. Horm Behav 39: 247–257CrossRefGoogle ScholarPubMed
Axelson, D. A., Doraiswamy, P. M., Boyko, O. B.et al. (1992). In vivo assessment of pituitary volume with magnetic resonance imaging and systematic stereology: relationship to dexamethasone suppression test results in patients. Psychiatry Res 44: 63–70CrossRefGoogle ScholarPubMed
Banki, C. M., Bissette, G., Arato, M., O'Connor, L., Nemeroff, C. B. (1987). CSF corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. Am J Psychiatry 144: 873–877Google Scholar
Bauer, M. E., Vedhara, K., Perks, P.et al. (2000). Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids. J Neuroimmunol 103: 84–92CrossRefGoogle ScholarPubMed
Bouwer, C., Claassen, J., Dinan, T. G., Nemeroff, C. B. (2000). Prednisone augmentation in treatment-resistant depression with fatigue and hypocortisolaemia: a case series. Depress Anxiety 12: 44–503.0.CO;2-C>CrossRefGoogle ScholarPubMed
Coryell, W., Tsuang, D. (1992). Hypothalamic–pituitary–adrenal axis hyperactivity and psychosis: recovery during an 8-year follow-up. Am J Psychiatry 149: 1033–1039Google ScholarPubMed
Cotter, D., Pariante, C. M. (2002). Stress and the progression of the developmental hypothesis of schizophrenia. Br J Psychiatry 181: 363–365CrossRefGoogle ScholarPubMed
Cotter, D., Mackay, D., Landau, S., Kerwin, R., and Everall, I. (2001). Glial cell loss and reduced neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58: 545–553CrossRefGoogle Scholar
Crossin, K. L., Tai, M. H., Krushel, L. A., Mauro, V. P., Edelman, G. M. (1997). Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci USA 94: 2687–2692CrossRefGoogle ScholarPubMed
Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301Google ScholarPubMed
DeBattista, C., Posener, J. A., Kalehzan, B. M., Schatzberg, A. F. (2000). Acute antidepressant effects of intravenous hydrocortisone and CRH in depressed patients: a double-blind, placebo-controlled study. Am J Psychiatry 157: 1334–1337CrossRefGoogle ScholarPubMed
Dinan, T. G. (1996). Noradrenergic and serotonergic abnormalities in depression: stress-induced dysfunction?J Clin Psychiatry 57(Suppl 4): 14–18Google ScholarPubMed
Dinan, T. G., Lavelle, E., Cooney, J.et al. (1997). Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 95: 58–61CrossRefGoogle ScholarPubMed
Eastwood, S. L., Harrison, P. J. (2001). Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a western blot study of synaptophysin, GAP-43, and the complexins. Brain Res Bull 55: 519–578CrossRefGoogle Scholar
Harrison, P. J. (1999). The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 122: 593–624CrossRefGoogle ScholarPubMed
Herz, M. I., Fava, G. A., Molnar, G., Edwards, L. (1985). The dexamethasone suppression test in newly hospitalized schizophrenic patients. Am J Psychiatry 142: 127–129Google ScholarPubMed
Heuser, I. J., Yassouridis, A., Holsboer, F. (1994). The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 28: 341–356CrossRefGoogle ScholarPubMed
Heuser, I. J., Schweiger, U., Gotthardt, U.et al. (1996). Pituitary–adrenal-system regulation and psychopathology during amitriptyline treatment in elderly depressed patients and normal comparison subjects. Am J Psychiatry 153: 93–99Google ScholarPubMed
Heuser, I. J., Bissette, G., Dettling, M.et al. (1998). Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety 8: 71–793.0.CO;2-N>CrossRefGoogle ScholarPubMed
Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23: 477–501CrossRefGoogle Scholar
Ismail, K., Murray, R. M., Wheeler, M. J., O'Keane, V. (1998). The dexamethasone suppression test in schizophrenia. Psychol Med 28: 311–317CrossRefGoogle Scholar
Keshavan, M. S., Haas, G. L., Kahn, C. E.et al. (1998). Superior temporal gyrus and the course of early schizophrenia: progressive static or reversible?J Psychiatr Res 32: 161–167CrossRefGoogle ScholarPubMed
Lammers, C. H., Garcia-Borreguero, D., Schmider, J.et al. (1995). Combined dexamethasone/ corticotropin-releasing hormone test in patients with schizophrenia and in normal controls: II. Biol Psychiatry 38: 803–807CrossRefGoogle ScholarPubMed
Lawrie, S. M., Whalley, H., Byrne, M.et al. (2000). Brain structure change and psychopathology in subjects at high risk of schizophrenia. Schizophr Res 41: 11CrossRefGoogle Scholar
Lewis, S. W., Murray, R. M. (1987). Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res 21: 413–421CrossRefGoogle ScholarPubMed
Lopez, J. F., Chalmers, D. T., Little, K. Y., Watson, S. J. (1998). A. E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43: 547–573CrossRefGoogle Scholar
McAllister-Williams, R. H., Ferrier, I. N., Young, A. H. (1998). Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med 28: 573–584CrossRefGoogle ScholarPubMed
McCarley, R. W., Wible, C. G., Frumin, M.et al. (1999). MRI anatomy of schizophrenia. Biol Psychiatry 45: 1099–1119CrossRefGoogle ScholarPubMed
McEwen, B. S. (2000). The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886: 172–189CrossRefGoogle Scholar
McQuade, R., Young, A. H. (2000). Future therapeutic targets in mood disorders: the glucocorticoid receptor. Br J Psychiatry 177: 390–395CrossRefGoogle ScholarPubMed
Nemeroff, C. B. (1996). The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1: 336–342Google ScholarPubMed
Nemeroff, C. B., Widerlov, E., Bissette, G.et al. (1984). Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226: 1342–1344CrossRefGoogle ScholarPubMed
Owens, M. J., Nemeroff, C. B. (1993). The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. Ciba Found Symp 172: 296–308Google ScholarPubMed
Pantellis, C., Velakoulis, D., Suckling, J.et al. (2000). Left medial temporal lobe volume reduction occurs during the transition from high risk to first episode psychosis. Schizophr Res 41: 35CrossRefGoogle Scholar
Pariante, C. M. (2003). Depression, stress and the adrenal axis. J Neuroendocrinol 15: 811–812Google ScholarPubMed
Pariante, C. M., Miller, A. H. (2001). Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49: 391–404CrossRefGoogle ScholarPubMed
Pariante, C. M., Pearce, B. D., Pisell, T. L., Owens, M. J., Miller, A. H. (1997). Steroid-independent translocation of the glucocorticoid receptor by the antidepressant desipramine. Mol Pharmacol 52: 571–581CrossRefGoogle ScholarPubMed
Pariante, C. M., Makoff, A., Lovestone, S.et al., (2001). Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol 134: 1335–1343CrossRefGoogle ScholarPubMed
Pariante, C. M., Papadopoulos, A. S., Poon, L.et al. (2002). A novel prednisolone suppression test for the hypothalamic–pituitary–adrenal axis. Biol Psychiatry 51: 922–930CrossRefGoogle ScholarPubMed
Pariante, C. M., Hye, A., Williamson, R.et al. (2003a). The antidepressant clomipramine regulates cortisol intracellular concentrations and glucocorticoid receptor expression in fibroblasts and rat primary neurones. Neuropsychopharmacology 28: 1553–1561CrossRefGoogle Scholar
Pariante, C. M., Kim, R. B., Makoff, A., Kerwin, R. W. (2003b). The antidepressant fluoxetine enhances glucocorticoid receptor function in vitro by modulating membrane steroid transporters. Br J Pharmacol 139: 1111–1118CrossRefGoogle Scholar
Pariante, C. M., Vassilopoulou, K., Velakoulis, D.et al. (2004a). Pituitary volume in psychosis. Br J Psychiatry 185: 5–10CrossRefGoogle Scholar
Pariante, C. M., Thomas, S. A., Lovestone, S., Makoff, A., Kerwin, R. W. (2004b). Do antidepressants regulate how cortisol affects the brain? 2003 Curt Richter Award Paper. Psychoneuroendocrinology 29: 423–447CrossRefGoogle Scholar
Purba, J. S., Raadsheer, F. C., Hofman, M. A.et al. (1995). Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of patients with multiple sclerosis. Neuroendocrinology 62: 62–70CrossRefGoogle ScholarPubMed
Raadsheer, F. C., Heerikhuize, J. J., Lucassen, P. J.et al. (1995). Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer's disease and depression. Am J Psychiatry 152: 1372–1376Google ScholarPubMed
Rajkowska, G., Miguel-Hidalgo, J. J., Wei, J. (1999). Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45: 1085–1098CrossRefGoogle ScholarPubMed
Rappaport, J. L., Giedd, J. N., Blumenthal, J.et al. (1999). Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 56: 649–654CrossRefGoogle Scholar
Ribeiro, S. C., Tandon, R., Grunhaus, L., Greden, J. F. (1993). The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatry 150: 1618–1629Google ScholarPubMed
Rosoklija, G., Toomayan, G., Ellis, S. P.et al. (2000). Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders. Arch Gen Psychiatry 57: 349–356CrossRefGoogle ScholarPubMed
Sachar, E. J., Kanter, S. S., Buie, D., Engle, R., Mehlman, R. (1970). Psychoendocrinology of ego disintegration. Am J Psychiatry 126: 1067–1078CrossRefGoogle ScholarPubMed
Sapolsky, R. (2000). The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 48: 755–65CrossRefGoogle ScholarPubMed
Sharma, R. P., Pandey, G. N., Janicak, P. G.et al. (1988). The effect of diagnosis and age on the DST: a metaanalytic approach. Biol Psychiatry 24: 555–568CrossRefGoogle ScholarPubMed
Tandon, R., Mazzara, C., DeQuardo, J.et al. (1991). Dexamethasone suppression test in schizophrenia: relationship to symptomatology, ventricular enlargement, and outcome. Biol Psychiatry 29: 953–964CrossRefGoogle ScholarPubMed
Walder, D. J., Walker, E. F., Lewine, R. J. (2000). Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol Psychiatry 48: 1121–1132CrossRefGoogle ScholarPubMed
Walker, E. F., Walder, D. J., Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Dev Psychopathol 13: 721–732CrossRefGoogle ScholarPubMed
Webster, M. J., Knable, M. B., O'Grady, J., Orthmann, J., Weickert, C. S. (2002). Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7: 985–994, 924CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669CrossRefGoogle ScholarPubMed
Xing, G. Q., Russell, S., Webster, M. J., Post, R. M. (2004). Decreased expression of mineralocorticoid receptor mRNA in the prefrontal cortex in schizophrenia and bipolar disorder. Int J Neuropsychopharmacol 7: 143–153CrossRefGoogle ScholarPubMed
Young, E. A., Haskett, R. F., Murphy-Weinberg, V., Watson, S. J., Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 48: 693–699CrossRefGoogle ScholarPubMed
Young, E. A., Lopez, J. F., Murphy-Weinberg, V., Watson, S. J., Akil, H. (1998). The role of mineralocorticoid receptors in hypothalamic–pituitary–adrenal axis regulation in humans. J Clin Endocrinol Metab 83: 3339–3345Google ScholarPubMed
Young, E. A., Lopez, J. F., Murphy-Weinberg, V., Watson, S. J., Akil, H. (2003). Mineralocorticoid receptor function in major depression. Arch Gen Psychiatry 60: 24–28CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×