Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T14:16:22.913Z Has data issue: false hasContentIssue false

58 - Dentatorubral-pallidoluysian atrophy (DRPLA): model for Huntington's disease and other polyglutamine diseases

from Part X - Other neurodegenerative diseases

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Christopher A. Ross
Affiliation:
Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Lisa M. Ellerby
Affiliation:
Buck Institute for Research in Aging 8001 Redwood Blvd, Novato, CA, USA
Jonathan D. Wood
Affiliation:
University of Sheffield Academic Neurology Unit, Medical School, Sheffield, UK
Federick C. Nucifora Jr.
Affiliation:
Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Get access

Summary

First description and historical review

Dentatorubral-pallidoluysian atrophy (DRPLA) was first reported by J. K. Smith in 1958, in a detailed clinical description of a single case (Smith et al., 1958). The disorder is rare in the western hemisphere, but in Japan is approximately as prevalent as Huntington's disease (HD). Like HD, DRPLA is inherited as an autosomal dominant, and shows a wide range of age of onset, with anticipation caused by instability of the triplet repeat expansion (Naito & Oyanagi, 1982; Takahashi et al., 1988; Iizuka et al., 1984; Goto et al., 1982). The triplet repeat expansion mutation which causes DRPLA was identified as part of a program to find genes with triplet repeats as candidates for neuropsychiatric disorders with anticipation (Li et al., 1993; Ross et al., 1993). Two Japanese groups independently used the primers for amplifying the CAG repeat to determine that it is expanded in DRPLA and identify the gene in which this expanded repeat is located, termed atrophin-1 (Koide et al., 1994; Nagafuchi et al., 1994; Margolis et al., 1996). The availability of a genetic test for DRPLA then made it possible to identify other families with DRPLA, some of whom had previously been diagnosed as having HD.

Morphological pattern of pathology

Among the polyglutamine neurodegenerative diseases, the pathology of DRPLA is most similar to that of HD (Ross, 1995). The areas most severely affected are given in the name of the disease. The dentate nucleus of the cerebellum has the greatest degeneration.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 861 - 870
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. A., Wells, D. G. & Fallon, J. R. (1999). The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci., 19, 7300–8CrossRefGoogle ScholarPubMed
Adachi, N., Arima, K., Asada, T.et al. (2001). Dentatorubral-pallidoluysian atrophy (DRPLA) presenting with psychosis. J. Neuropsychiatry Clin. Neurosci., 13, 258–60CrossRefGoogle ScholarPubMed
Andreassen, O. A., Dedeoglu, A., Ferrante, R. J.et al. (2001). Creatine increases survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol. Dis., 8, 479–91CrossRefGoogle Scholar
Becher, M. W., Kotzuk, J. A., Sharp, A. H.et al. (1997a). Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis., 4, 387–97CrossRefGoogle Scholar
Becher, M. W., Kotzuk, J. A., Sharp, A. H.et al. (1998). Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol. Dis., 4, 387–97CrossRefGoogle ScholarPubMed
Becher, M. W. & Ross, C. A. (1998). Intranuclear neuronal inclusions in DRPLA [letter; comment]. Mov. Disord., 13, 852–3Google Scholar
Becher, M. W., Rubinsztein, D. C., Leggo, J.et al. (1997b). Dentatorubral and pallidoluysian atrophy (DRPLA). Clinical and neuropathological findings in genetically confirmed North American and European pedigrees. Mov. Disord., 12, 519–30CrossRefGoogle Scholar
Burke, J. R., Wingfield, M. S., Lewis, K. E.et al. (1994). The Haw River syndrome: dentato-rubropallidoluysian atrophy (DRPLA) in an African-American family. Nat. Genet., 7, 521–4CrossRefGoogle Scholar
Deka, R., Miki, T., Yin, S.-J.et al. (1995). Normal CAG repeat variation at the DRPLA locus in world populations. Am. J. Hum. Genet., 57, 508–11Google ScholarPubMed
Dobrosotskaya, I., Guy, R. K. & James, G. L. (1997). MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J. Biol. Chem., 272, 31589–97CrossRefGoogle ScholarPubMed
Dunah, A. W., Jeong, H., Griffin, A.et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science, 296, 2238–43CrossRefGoogle ScholarPubMed
Ellerby, L. M., Andrusiak, R. L., Wellington, C. L.et al. (1999). Cleavage of atrophin-1 at caspase site aspartic acid 109 modulates cytotoxicity. J. Biol. Chem., 274, 8730–6CrossRefGoogle ScholarPubMed
Erkner, A., Roure, A., Charroux, B.et al. (2002). Grunge, related to human Atrophin-like proteins, has multiple functions in Drosophila development. Development, 129, 1119–29Google ScholarPubMed
Feigin, A. & Zgaljardic, D. (2002). Recent advances in Huntington's disease: implications for experimental therapeutics. Curr. Opin. Neurol., 15, 483–9CrossRefGoogle ScholarPubMed
Ferrante, R. J., Andreassen, O. A., Dedeoglu, A.et al. (2002). Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease. J. Neurosci., 22, 1592–9CrossRefGoogle ScholarPubMed
Gafni, J. & Ellerby, L. M. (2002). Calpain activation in Huntington's disease. J. Neurosci., 22, 4842–9CrossRefGoogle ScholarPubMed
Goldberg, Y. P., Nicholson, D. W., Rasper, D. M.et al. (1996). Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet., 13, 442–9CrossRefGoogle ScholarPubMed
Goto, I., Tobimatsu, S., Ohta, M., Hosokawa, S., Shibasaki, H. & Kuroiwa, Y. (1982). Dentatorubropallidoluysian degeneration: clinical, neuro-ophthalmologic, biochemical, and pathologic studies on autosomal dominant form. Neurology, 32, 1395–9CrossRefGoogle ScholarPubMed
Holbert, S., Denghien, I., Kiechle, T.et al. (2001). The Gln–Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis. Proc. Natl Acad. Sci., USA, 98, 1811–16CrossRefGoogle ScholarPubMed
Huntington Study Group, T. (2001). A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology, 57, 397–404CrossRef
Igarashi, S., Koide, R., Shimohata, T.et al. (1998). Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat. Genet., 18, 111–17CrossRefGoogle ScholarPubMed
Iizuka, R., Hirayama, K. & Maehara, K. (1984). Dentato-rubro-pallido-luysian atrophy: a clinco-pathological study. J. Neurol. Neurosurg. Psychiatr., 47, 1288–98CrossRefGoogle Scholar
Jankowsky, J. L., Savonenko, A., Schilling, G., Wang, J., Xu, G. & Borchelt, D. R. (2002). Transgenic mouse models of neurodegenerative disease: opportunities for therapeutic development. Curr. Neurol. Neurosci. Rep., 2, 457–64CrossRefGoogle ScholarPubMed
Jiang, H., Nucifora, F. C. Jr., Ross, C. A. & DeFranco, D. B. (2003). Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum. Mol. Genet., 12, 1–12CrossRefGoogle Scholar
Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. (1999). Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci., USA, 96, 11404–9CrossRefGoogle ScholarPubMed
Kim, Y. J., Yi, Y., Sapp, E.et al. (2001). Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc. Natl Acad. Sci., USA, 98, 12784–9CrossRefGoogle ScholarPubMed
Koide, O., Ikeuchi, T., Onodera, O.et al. (1994). Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat. Genet., 6, 9–13CrossRefGoogle Scholar
Koide, R., Onodera, O., Ikeuchi, T.et al. (1997). Atrophy of the cerebellum and brainstem in dentatorubral pallidoluysian atrophy. Influence of CAG repeat size on MRI findings. Neurology, 49 (6), 1605–12CrossRefGoogle ScholarPubMed
Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol., 10, 524–30CrossRefGoogle ScholarPubMed
Koyano, S., Iwabuchi, K., Yagishita, S., Kuroiwa, Y. & Uchihara, T. (2002). Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion. J. Neurol. Neurosurg. Psychiatr., 73, 450–2CrossRefGoogle ScholarPubMed
Le, B. I., Camuzat, A., Castelnovo, G.et al. (2003). Prevalence of dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch. Neurol., 60, 1097–9Google Scholar
Lee, I. H., Soong, B. W., Lu, Y. C. & Chang, Y. C. (2001). Dentatorubropallidoluysian atrophy in Chinese. Arch. Neurol., 58, 1905–8CrossRefGoogle ScholarPubMed
Li, S.-H., McInnis, M. G., Margolis, R. L., Antonarakis, S. E. & Ross, C. A. (1993). Novel triplet repeat containing genes in human brain: cloning, expression, and length polymorphisms. Genomics, 16, 572–9CrossRefGoogle ScholarPubMed
Licht, D. J. & Lynch, D. R. (2002). Juvenile dentatorubral-pallidoluysian atrophy: new clinical features. Pediatr. Neurol., 26, 51–4CrossRefGoogle ScholarPubMed
Lodi, R., Schapira, A. H., Manners, D.et al. (2000). Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann. Neurol., 48, 72–63.0.CO;2-I>CrossRefGoogle ScholarPubMed
Lunkes, A., Lindenberg, K. S., Ben Haiem, L.et al. (2002). Proteases acting on mutant huntingtin generate cleaved products that differentially build up cytoplasmic and nuclear inclusions. Mol. Cel., 10, 259–69CrossRefGoogle ScholarPubMed
Luthi-Carter, R., Strand, A., Peters, N. L.et al. (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Hum. Mol. Genet., 9, 1259–71CrossRefGoogle Scholar
Luthi-Carter, R., Strand, A. D., Hanson, S. A.et al. (2002). Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum. Mol. Genet., 11, 1927–37CrossRefGoogle ScholarPubMed
Margolis, R. L., Li, S.-H., Young, W. S.et al. (1996). DRPLA gene (Atrophin-1) sequence and mRNA expression in human brain. Mol. Brain Res., 36, 219–26CrossRefGoogle ScholarPubMed
Masuda, N., Goto, J., Murayama, N., Watanabe, M., Kondo, I. & Kanazawa, I. (1995). Analysis of triplet repeats in the huntingtin gene in Japanese families affected with Huntington disease. J. Med. Genet., 32, 701–5CrossRefGoogle Scholar
McCampbell, A. & Fischbeck, K. H. (2001). Polyglutamine and CBP: fatal attraction?Nat. Med., 7, 528–30CrossRefGoogle ScholarPubMed
McCampbell, A., Taye, A. A., Whitty, L., Penney, E., Steffan, J. S. & Fischbeck, K. H. (2001). Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci., USA, 98, 15179–84CrossRefGoogle ScholarPubMed
McCampbell, A., Taylor, J. P., Taye, A. A.et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet., 9, 2197–202CrossRefGoogle ScholarPubMed
Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. (2000). IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature, 408, 732–5CrossRefGoogle ScholarPubMed
Miyashita, T., Nagao, K., Ohmi, K., Yanagisawa, H., Okamura-Oho, Y. & Yamada, M. (1998). Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem. Biophys. Res. Commun., 249, 96–102CrossRefGoogle ScholarPubMed
Miyashita, T., Okamura-Oho, Y., Mito, Y., Nagafuchi, S. & Yamada, M. (1997). Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis. J. Biol. Chem., 272, 29238–42CrossRefGoogle ScholarPubMed
Nagafuchi, S., Yanagisawa, H., Ohsaki, E.et al. (1994). Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat. Genet., 8, 177–82CrossRefGoogle Scholar
Naito, H. & Oyanagi, S. (1982). Familial myoclonus epilepsy and choreoathetosis: Hereditary dentatorubral-pallidoluysian atrophy. Neurology, 32, 798–807CrossRefGoogle ScholarPubMed
Nielsen, J. E., Sorensen, S. A., Hasholt, L. & Norremolle, A. (1996). Dentatorubral-pallidoluysian atrophy. Clinical features of a five-generation Danish family. Mov. Disord., 11, 533–41CrossRefGoogle ScholarPubMed
Norremolle, A., Nielsen, J. E., Sorensen, S. A. & Hasholt, E. (1995). Elongated CAG repeats of the B37 gene in a Danish family with dentato-rubral-pallido-luysian atrophy. Hum. Genet., 95, 313–18CrossRefGoogle Scholar
Nucifora, F. C. Jr., Ellerby, L. M., Wellington, C. L.et al. (2003). Nuclear localization of a non-caspase truncation product of atrophin-1, with an expanded polyglutamine repeat, increases cellular toxicity. J. Biol. Chem., 278, 13047–55CrossRefGoogle ScholarPubMed
Nucifora, F. C. Jr., Sasaki, M., Peters, M. F.et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity1. Science, 291, 2423–8CrossRefGoogle Scholar
Ohizumi, H., Okuma, Y., Fukae, J., Fujishima, K., Goto, K. & Mizuno, Y. (2002). Head tremor in dentatorubral-pallidoluysian atrophy. Acta Neurol. Scand., 106, 319–21CrossRefGoogle ScholarPubMed
Okamura-Oho, Y., Miyashita, T., Ohmi, K. & Yamada, M. (1999). Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Hum. Mol. Genet., 8, 947–57CrossRefGoogle ScholarPubMed
Okamura-Oho, Y., Miyashita, T. & Yamada, M. (2001). Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochem. Biophys. Res. Commun., 289, 957–60CrossRefGoogle Scholar
Okamura-Oho, Y., Miyashita, T., Nagao, K.et al. (2003). Dentatorubral-pallidoluysian atrophy protein is phosphorylated by c-Jun NH2-terminal kinase. Hum. Mol. Genet., 12, 1535–42CrossRefGoogle ScholarPubMed
Perutz, M. (1994). Polar zippers: their role in human disease. In Protein Science, London: Cambridge University Press, pp. 1629–37CrossRef
Perutz, M. F. (1996). Glutamine repeats and inherited neurodegenerative diseases: molecular aspects. Curr. Opini. Struct. Biol., 6, 848–58CrossRefGoogle ScholarPubMed
Peters, M. F., Nucifora, F. C. Jr., Kushi, J.et al. (1999). Nuclear targeting of mutant Huntingtin increases toxicity 3. Mol. Cell Neurosci., 14, 121–8CrossRefGoogle Scholar
Potter, N. T., Meyer, M. A., Zimmerman, A. W., Eisenstadt, M. L. & Anderson, I. J. (1995). Molecular and clinical findings in a family with dentatorubral-pallidoluysian atrophy. Ann. Neurol., 37, 273–7CrossRefGoogle Scholar
Preisinger, E., Jordan, B. M., Kazantsev, A. & Housman, D. (1999). Evidence for a recruitment and sequestration mechanism in Huntington's disease. Phil. Trans. Roy. Soc. Lond B Biol. Sci., 354, 1029–34CrossRefGoogle ScholarPubMed
Ross, C. A. (1995). When more is less: pathogenesis of glutamine repeat neurodegenerative diseases. Neuron, 15, 493–6CrossRefGoogle ScholarPubMed
Ross, C. A. (2002). Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron, 35, 819–22CrossRefGoogle ScholarPubMed
Ross, C. A., Becher, M. W., Colomer, V., Engelender, S., Wood, J. D. & Sharp, A. H. (1997a). Huntington's disease and dentatorubral-pallidoluysian atrophy: proteins, pathogenesis, and pathology. Brain Pathol., 7, 1003–16CrossRefGoogle Scholar
Ross, C. A., Margolis, R. L., Rosenblatt, A., Ranen, N. G., Becher, M. W. & Aylward, E. (1997b). Reviews in molecular medicine: Huntington disease and the related disorder, dentatorubral-pallidoluysian atrophy (DRPLA). Medicine, 76, 305–38CrossRefGoogle Scholar
Ross, C. A., McInnis, M. G., Margolis, R. L. & Li, S.-H. (1993). Genes with triplet repeats: candidate mediators of neuropsychiatric disorders. Trends Neurosci., 16, 254–60CrossRefGoogle ScholarPubMed
Sato, A., Shimohata, T., Koide, R.et al. (1999a). Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally differentiated PC12 cells. Preferential intranuclear aggregate formation and apoptosis. Hum. Mol. Genet., 8, 997–1006CrossRefGoogle Scholar
Sato, T., Oyake, M., Nakamura, K.et al. (1999b). Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum. Mol. Genet., 8, 99–106CrossRefGoogle Scholar
Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell, 95, 55–66CrossRefGoogle Scholar
Schilling, G., Wood, J. D., Duan, K.et al. (1999). Nuclear accumulation of truncated atrophin-1 fragments in a transgenic mouse model of DRPLA. Neuron, 24, 275–286CrossRefGoogle Scholar
Schilling, G., Jinnah, H. A., Gonzales, V.et al. (2001). Distinct behavioral and neuropathological abnormalities in transgenic mouse models of hd and drpla. Neurobiol. Dis., 8, 405–18CrossRefGoogle ScholarPubMed
Shimohata, T., Nakajima, T., Yamada, M.et al. (2000). Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet., 26, 29–36Google ScholarPubMed
Shimohata, T., Sato, A., Burke, J. R., Strittmatter, W. J., Tsuji, S. & Onodera, O. (2002). Expanded polyglutamine stretches form an “aggresome.”Neurosci. Lett., 323, 215–18CrossRefGoogle ScholarPubMed
Smith, J. K. (1975). Dentatorubropallidoluysian atrophy. In Handbook of Clinical Neurology, Vol. 21, 519–34
Smith, J. K., Gonda, V. E. & Malamud, N. (1958). Unusual form of cerebellar ataxia; combined dentato-rubral and pallido-Luysian degeneration. Neurology, 8, 205–9CrossRefGoogle ScholarPubMed
Squitieri, F., Andrew, S. E., Goldberg, Y. P.et al. (1994). DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum. Mol. Genet., 3, 2103–14CrossRefGoogle ScholarPubMed
Steffan, J. S., Bodai, L., Pallos, J.et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature, 413, 739–43CrossRefGoogle ScholarPubMed
Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O.et al. (2000). The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci., USA, 97, 6763–8CrossRefGoogle ScholarPubMed
Takahashi, H., Ohama, E., Naito, H.et al. (1988). Hereditary dentatorubral-pallidoluysian atrophy: clinical and pathologic variants in a family. Neurology, 38, 1065–70CrossRefGoogle ScholarPubMed
Tarnopolsky, M. A. & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol., 49, 561–74CrossRefGoogle ScholarPubMed
Terashima, T., Kawai, H., Fujitani, M., Maeda, K. & Yasuda, H. (2002). SUMO-1 co-localized with mutant atrophin-1 with expanded polyglutamines accelerates intranuclear aggregation and cell death. Neuroreport, 13, 2359–64CrossRefGoogle ScholarPubMed
Tomoda, A., Ikezawa, M., Ohtani, Y., Miike, T. & Kumamoto, T. (1991). Progressive myoclonus epilepsy: dentato-rubro-pallido-luysian atrophy (DRPLA) in childhood. Brain Dev., 13, 266–9CrossRefGoogle Scholar
Toyoshima, I., Sugawara, M., Kato, K.et al. (2002). Time course of polyglutamine aggregate body formation and cell death: enhanced growth in nucleus and an interval for cell death. J. Neurosci. Res., 68, 442–8CrossRefGoogle ScholarPubMed
Tsuji, S. (1999). Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features and molecular genetics. Adv. Neurol., 79, 399–409Google ScholarPubMed
Tsuji, S. (2000). Dentatorubral-pallidoluysian atrophy (DRPLA). J. Neural. Transm. Suppl., 167–80Google Scholar
Ueda, H., Goto, J., Hashida, H.et al. (2002). Enhanced SUMOylation in polyglutamine diseases. Biochem. Biophys. Res. Commun., 293, 307–13CrossRefGoogle ScholarPubMed
Villani, F., Gellera, C., Spreafico, R.et al. (1998). Clinical and molecular findings in the first identified Italian family with dentatorubral-pallidoluysian atrophy. Acta Neurol. Scand., 98, 324–7CrossRefGoogle ScholarPubMed
Waerner, T., Gardellin, P., Pfizenmaier, K., Weith, A. & Kraut, N. (2001). Human rere is localized to nuclear promyelocytic leukemia oncogenic domains and enhances apoptosis. Cell Growth Differ., 12, 201–10Google ScholarPubMed
Warner, T. T., Williams, L. D., Walker, R. W.et al. (1995). A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann. Neurol., 37, 452–9CrossRefGoogle ScholarPubMed
Watkins, W. S., Bamshad, M. & Jorde, L. B. (1995). Population genetics of trinucleotide repeat polymorphisms. Hum. Mol. Genet., 4, 1485–91CrossRefGoogle ScholarPubMed
Wellington, C. L., Ellerby, L. M., Hackam, A. S.et al. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem., 273, 9158–67CrossRefGoogle ScholarPubMed
Wellington, C. L., Leavitt, B. R. & Hayden, M. R. (2000). Huntington disease: new insights on the role of huntingtin cleavage 6. J. Neural. Transm. Suppl., 1–17Google Scholar
Wood, J. D., Yuan, J., Margolis, R. L.et al. (1998). Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol. Cell Neurosci., 11, 149–60CrossRefGoogle ScholarPubMed
Wood, J. D., Nucifora, F. C. Jr., Wang, J.et al. (2000a). Pathogenesis of dentatorubral and pallidoluysianatrophy (DRPLA): comparison to Huntington's disease (HD). Neurosci. New., 3, 73–9Google Scholar
Wood, J. D., Nucifora, F. C. Jr., Duan, K.et al. (2000b). Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J. Cell Biol., 150, 939–48CrossRefGoogle Scholar
Yabe, I., Sasaki, H., Kikuchi, S.et al. (2002). Late onset ataxia phenotype in dentatorubro-pallidoluysian atrophy (DRPLA). J. Neurol., 249, 432–6Google Scholar
Yamada, M., Tsuji, S. & Takahashi, H. (2000). Pathology of CAG repeat diseases. Neuropathology, 20, 319–25CrossRefGoogle ScholarPubMed
Yamada, M., Sato, T., Shimohata, T.et al. (2001a). Interaction between neuronal intranuclear inclusions and promyelocytic leukemia protein nuclear and coiled bodies in CAG repeat diseases. Am. J. Pathol., 159, 1785–95CrossRefGoogle Scholar
Yamada, M., Tsuji, S. & Takahashi, H. (2002). Genotype-phenotype correlation in CAG-repeat diseases. Neuropathology, 22, 317–22CrossRefGoogle ScholarPubMed
Yamada, M., Wood, J. D., Shimohata, T.et al. (2001b). Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann. Neurol., 49, 14–233.0.CO;2-X>CrossRefGoogle Scholar
Yanagisawa, H., Fujii, K., Nagafuchi, S.et al. (1996). A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. Hum. Mol. Genet., 5, 373–9CrossRefGoogle ScholarPubMed
Yanagisawa, H., Bundo, M., Miyashita, T.et al. (2000). Protein binding of a DRPLA family through arginine-glutamic acid dipeptide repeats is enhanced by extended polyglutamine. Hum. Mol. Genet., 9, 1433–42CrossRefGoogle ScholarPubMed
Yazawa, I., Nukina, N., Hashida, H., Goto, J., Yamada, M. & Kanazawa, I. (1995). Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat. Genet. 10, 99–103CrossRefGoogle ScholarPubMed
Zhang, S., Xu, L., Lee, J. & Xu, T. (2002a). Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes. Cell, 108, 45–56Google Scholar
Zhang, S., Zhang, H. B. & Liu, D. P. (2002b). Screening regulatory sequences from bacterial artificial chromosome DNA of alpha- and beta-globin gene clusters. Biochem. Cell Biol., 80, 415–20CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×