Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T07:12:59.102Z Has data issue: false hasContentIssue false

4 - Axonal signals for potassium channel expression in Schwann cells

from Part I - Physiology and pathophysiology of nerve fibres

Published online by Cambridge University Press:  04 August 2010

T. Konishi
Affiliation:
Department of Neurology, Utano National Hospital, Kyoto, Japan
Hugh Bostock
Affiliation:
Institute of Neurology, London
P. A. Kirkwood
Affiliation:
Institute of Neurology, London
A. H. Pullen
Affiliation:
Institute of Neurology, London
Get access

Summary

Introduction

Following a report of voltage-gated Na+ and K+ currents in cultured Schwann cells (Chiu, Shrager & Ritchie, 1984), various kinds of voltage-gated ionic channels have been found in glial cells in the peripheral and central nervous systems (Barres, Chun & Corey, 1990). Among these ionic channels in glial cells, inwardly rectifying potassium (Kir) channels are important for the regulation of the potassium microenvironment in the nervous system by potassium siphoning (Newman, Frambach & Odette, 1984; Konishi, 1990) or spatial potassium buffering (Orkand, Nicholls & Kuffler, 1966). This chapter focuses on the mechanism of the expression of functional Kir channels in mouse Schwann cells in relation to axonal contact, intracellular cAMP and neuronal activity, and discusses the physiological significance of Schwann cells in potassium regulation.

Axonal contact

In cultured Schwann cells obtained from dissociated sciatic nerves of neonatal mice, only voltage-gated outward currents were recorded with the whole-cell patch-clamp technique during depolarizing voltage steps (Konishi, 1989). The equilibrium potentials of the tail currents indicated that these outward currents were carried by potassium ions (Konishi, 1989). They were eliminated by bath application of quinine, but were not affected by external barium (Konishi, 1990). In freshly dissociated Schwann cells from neonatal sciatic nerves, both myelinating and non-myelinating cells showed bariumsensitive inward currents during hyperpolarizing voltage steps, which were disclosed by subtracting a record in a solution containing barium from a record in standard solution (Fig. 4.1) (Konishi, 1992).

Type
Chapter
Information
The Neurobiology of Disease
Contributions from Neuroscience to Clinical Neurology
, pp. 37 - 46
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×