Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T04:23:07.228Z Has data issue: false hasContentIssue false

2 - Molecular mechanisms of neonatal brain injury and neural rescue

from Section 1 - Scientific background

Published online by Cambridge University Press:  05 March 2013

A. David Edwards
Affiliation:
Institute of Reproductive and Developmental Biology, Imperial College, London
Denis V. Azzopardi
Affiliation:
Institute of Reproductive and Developmental Biology, Imperial College, London
Alistair J. Gunn
Affiliation:
School of Medical Sciences, University of Auckland
Get access

Summary

Introduction

Perinatal brain injury is a common cause of life-long neurological deficits and there is an urgent need to better understand its pathophysiology and to find strategies for prevention and treatment. The etiology is complex and multifactorial but hypoxia–ischaemia (HI), infection/inflammation and excitotoxicity (see below) are considered important causes or precipitating insults of preventable/treatable forms of perinatal brain injury. In this review, we will focus on mechanisms of brain injury in response to acute sterile insults in the developing brain that occur in term (e.g., neonatal encephalopathy) or preterm infants.

Genetic background, developmental age, sex and brain maturity affect vulnerability and the mechanisms of brain injury [1,2]. Furthermore, antecedents such as infection/inflammation, intrauterine growth restriction or pre-exposures to hypoxia can modulate brain vulnerability in response to acute insults [3–5]. Brain injury evolves over time and different mechanisms are critical during the primary, secondary and tertiary phases (Figure 2.1). Indeed, recent experimental data suggest that interventions can be effective if administered hours, days or even weeks after the primary insult [6,7].

Type
Chapter
Information
Neonatal Neural Rescue
A Clinical Guide
, pp. 16 - 32
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vannucci, SJ, Hagberg, H. Hypoxia-ischemia in the immature brain. J Exp Biol 2004;207:3149–54.CrossRefGoogle ScholarPubMed
Johnston, MV, Hagberg, H. Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol 2007;49:74–8.CrossRefGoogle ScholarPubMed
Gidday, JM, Fitzgibbons, JC, Shah, AR, et al. Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci Lett 1994;168:221–4.CrossRefGoogle ScholarPubMed
Dommergues, MA, Patkai, J, Renauld, JC, et al. Proinflammatory cytokines and interleukin-9 exacerbate excitotoxic lesions of the newborn murine neopallium. Ann Neurol 2000;47:54–63.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Eklind, S, Mallard, C, Leverin, AL, et al. Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur J Neurosci 2001;13:1101–6.CrossRefGoogle ScholarPubMed
Gonzalez, FF, Ferriero, DM. Neuroprotection in the newborn infant. Clin Perinatol 2009;36:859–80.CrossRefGoogle ScholarPubMed
van Velthoven, CT, Kavelaars, A, van Bel, F, et al. Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity and sensorimotor function. J Neurosci 2010;30:9603–11.CrossRefGoogle ScholarPubMed
Lorek, A, Takei, Y, Cady, EB, et al. Delayed (‘secondary’) cerebral energy failure following acute hypoxia-ischaemia in the newborn piglet: continuous 48-hour studies by 31P magnetic resonance spectroscopy. Pediatr Res 1994;36:699–706.CrossRefGoogle Scholar
Blumberg, RM, Cady, EB, Wigglesworth, JS, et al. Relation between delayed impairment of cerebral energy metabolism and infarction following transient focal hypoxia-ischaemia in the developing brain. Exp Brain Res 1997;113:130–7.CrossRefGoogle ScholarPubMed
Gilland, E, Bona, E, Hagberg, H. Temporal changes of regional glucose use, blood flow and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab 1998;18:222–8.CrossRefGoogle ScholarPubMed
Azzopardi, D, Wyatt, JS, Cady, EB, et al. Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr Res 1989;25:445–51.CrossRefGoogle ScholarPubMed
Roth, SC, Baudin, J, Cady, E, et al. Relation of deranged neonatal cerebral oxidative metabolism with neurodevelopmental outcome and head circumference at 4 years. Dev Med Child Neurol 1997;39:718–25.CrossRefGoogle ScholarPubMed
Thoresen, M, Penrice, J, Lorek, A, et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 1995;37:667–70.CrossRefGoogle ScholarPubMed
Edwards, AD, Brocklehurst, P, Gunn, AJ, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:c363.CrossRefGoogle ScholarPubMed
Follett, PL, Deng, W, Dai, W, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 2004;24:4412–20.CrossRefGoogle ScholarPubMed
Johnston, MV. Excitotoxicity in perinatal brain injury. Brain Pathol 2005;15:234–40.CrossRefGoogle ScholarPubMed
Salter, MG, Fern, R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005;438:1167–71.CrossRefGoogle ScholarPubMed
McDonald, JW, Silverstein, FS, Johnston, MV. Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 1988;459:200–3.CrossRefGoogle ScholarPubMed
Marret, S, Mukendi, R, Gadisseux, JF, et al. Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic like lesions. J Neuropathol Exp Neurol 1995;54:358–70.CrossRefGoogle ScholarPubMed
Volpe, JJ, Kinney, HC, Jensen, FE, et al. The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011;29:423–40.CrossRefGoogle ScholarPubMed
Tahraoui, SL, Marret, S, Bodenant, C, et al. Central role of microglia in neonatal excitotoxic lesions of the murine periventricular white matter. Brain Pathol 2001;11:56–71.CrossRefGoogle ScholarPubMed
Legros, H, Launay, S, Roussel, BD, et al. Newborn- and adult-derived brain microvascular endothelial cells show age-related differences in phenotype and glutamate-evoked protease release. J Cereb Blood Flow Metab 2009;29:1146–58.CrossRefGoogle ScholarPubMed
Hagberg, H, Andersson, P, Kjellmer, I, et al. Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia-ischemia. Neurosci Lett 1987;78:311–7.CrossRefGoogle ScholarPubMed
Tan, WK, Williams, CE, During, MJ, et al. Accumulation of cytotoxins during the development of seizures and edema after hypoxic-ischemic injury in late gestation fetal sheep. Pediatr Res 1996;39:791–7.CrossRefGoogle ScholarPubMed
Thoresen, M, Satas, S, Puka-Sundvall, M, et al. Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport 1997;8:3359–62.CrossRefGoogle ScholarPubMed
Hagberg, H, Thornberg, E, Blennow, M, et al. Excitatory amino acids in the cerebrospinal fluid of asphyxiated infants: relationship to hypoxic-ischemic encephalopathy. Acta Paediatr 1993;82:925–9.CrossRefGoogle ScholarPubMed
Hagberg, H, Gilland, E, Diemer, NH, et al. Hypoxia-ischemia in the neonatal rat brain: histopathology after post-treatment with NMDA and non-NMDA receptor antagonists. Biol Neonate 1994;66:206–13.CrossRefGoogle ScholarPubMed
Sfaello, I, Baud, O, Arzimanoglou, A, et al. Topiramate prevents excitotoxic damage in the newborn rodent brain. Neurobiol Dis 2005;20:837–48.CrossRefGoogle ScholarPubMed
Ikonomidou, C, Bosch, F, Miksa, M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999;283:70–4.CrossRefGoogle ScholarPubMed
Cattano, D, Williamson, P, Fukui, K, et al. Potential of xenon to induce or to protect against neuroapoptosis in the developing mouse brain. Can J Anaesth 2008;55:429–36.CrossRefGoogle ScholarPubMed
Manning, SM, Boll, G, Fitzgerald, E, et al. The clinically available NMDA receptor antagonist, memantine, exhibits relative safety in the developing rat brain. Int J Dev Neurosci 2011;29:767–73.CrossRefGoogle ScholarPubMed
Laudenbach, V, Mantz, J, Lagercrantz, H, et al. Effects of alpha-2 adrenoceptor agonists on perinatal excitotoxic brain injury: comparison of clonidine and dexmedetomidine. Anesthesiology 2002;96:134–41.CrossRefGoogle ScholarPubMed
Paris, A, Mantz, J, Toner, PH, et al. Effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the alpha2A-adrenoceptor subtype. Anesth Analg 2006;102:456–61.CrossRefGoogle ScholarPubMed
Ma, D, Hossain, M, Rajakumaraswamy, N, et al. Dexmedetomidine produces its neuroprotective effect via the alpha 2A-adrenoceptor subtype. Eur J Pharmacol 2004;502:87–97.CrossRefGoogle ScholarPubMed
Shouman, B, Fontaine, RH, Baud, O, et al. Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol 2006;148:442–51.CrossRefGoogle ScholarPubMed
Miller, RJ. The control of neuronal Ca2+ homeostasis. Prog Neurobiol 1991;37:255–85.CrossRefGoogle ScholarPubMed
Siesjo, BK. Calcium and ischemic brain damage. Eur Neurol 1986;25:45–56.CrossRefGoogle ScholarPubMed
Bickler, P, Gallego, S. Hansen, B. Developmental changes in intracellular calcium regulation in rat cerebral cortex during hypoxia. J Cereb Blood Flow Metab 1993;13:811–9.CrossRefGoogle ScholarPubMed
Stein, DT, Vannucci, RC. Calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 1988;8:834–42.CrossRefGoogle ScholarPubMed
Blomgren, K, Kawashima, S, Saido, TC, et al. Fodrin degradation and subcellular distribution of calpains after neonatal rat cerebral hypoxic-ischemia. Brain Res 1995;684:143–9.CrossRefGoogle ScholarPubMed
Takita, M, Puka-Sundvall, M, Miyakawa, A, et al. In vivo calcium imaging of cerebral cortex in hypoxia-ischemia followed by developmental stage-specific injury in rats. Neurosci Res 2004;48:169–73.CrossRefGoogle ScholarPubMed
Puka-Sundvall, M, Gajkowska, B, Cholewinski, M, et al. Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats. Brain Res Dev Brain Res 2000;125:31–41.CrossRefGoogle ScholarPubMed
Northington, FJ, Ferriero, DM, Flock, DL, et al. Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 2001;21:1931–8.CrossRefGoogle ScholarPubMed
Gilland, E, Puka-Sundvall, M, Hillered, L, et al. Mitochondrial function and energy metabolism after hypoxia-ischemia in the immature rat brain: involvement of NMDA-receptors. J Cereb Blood Flow Metab 1998;18:297–304.CrossRefGoogle ScholarPubMed
Blennow, M, Ingvar, M, Lagercrantz, H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr 1995;84:1289–95.CrossRefGoogle ScholarPubMed
Northington, FJ, Chavez-Valdez, R, Martin, LJ. Neuronal cell death in neonatal hypoxia-ischemia. Ann Neurol 2011;69:743–58.CrossRefGoogle ScholarPubMed
Blomgren, K, Zhu, C, Wang, X, et al. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of “pathological apoptosis”? J Biol Chem 2001;276:10191–8.CrossRefGoogle ScholarPubMed
Ota, K, Yakovlev, AG, Itaya, A, et al. Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. J Biochem 2002;131:131–5.CrossRefGoogle ScholarPubMed
Kuida, K, Zheng, TS, Na, S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996;384:368–72.CrossRefGoogle ScholarPubMed
Cheng, Y, Deshmukh, M, D’Costa, A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest 1998;101:1992–9.CrossRefGoogle Scholar
Zhu, C, Wang, X, Xu, F, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ 2005;12:162–76.CrossRefGoogle ScholarPubMed
Galluzzi, L, Blomgren, K, Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009;10:481–94.CrossRefGoogle ScholarPubMed
Edwards, AD, Yue, X, Cox, P, et al. Apoptosis in the brains of infants suffering intrauterine cerebral injury. Pediatr Res 1997;42:684–9.CrossRefGoogle ScholarPubMed
Blomgren, K, Hagberg, H. Free radicals, mitochondria and hypoxia-ischemia in the developing brain. Free Radic Biol Med 2006;40:388–97.CrossRefGoogle ScholarPubMed
Zhu, C, Wang, X, Hagberg, H, et al. Correlation between caspase-3 activation and three different markers of DNA damage in neonatal cerebral hypoxia-ischemia. J Neurochem 2000;75:819–29.CrossRefGoogle ScholarPubMed
Wang, X, Zhu, C, Hagberg, H, et al. X-linked inhibitor of apoptosis (XIAP) protein protects against caspase activation and tissue loss after neonatal hypoxia-ischemia. Neurobiol Dis 2004;16:179–89.CrossRefGoogle ScholarPubMed
Joly, LM, Mucignat, V, Mariani, J, et al. Caspase inhibition after neonatal ischemia in the rat brain. J Cereb Blood Flow Metab 2004;24:124–31.CrossRefGoogle ScholarPubMed
Felderhoff-Mueser, U, Taylor, DL, Greenwood, K, et al. Fas/CD95/APO-1 can function as a death receptor for neuronal cells in vitro and in vivo and is upregulated following cerebral hypoxic-ischemic injury to the developing rat brain. Brain Pathol 2000;10:17–29.CrossRefGoogle ScholarPubMed
Graham, EM, Sheldon, RA, Flock, DL, et al. Neonatal mice lacking functional Fas death receptor are resistant to hypoxic stress. Neurobiol Dis 2004;88:1122–4.Google Scholar
Gill, R, Soriano, M, Blomgren, K, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab 2002;22:420–30.CrossRefGoogle ScholarPubMed
Hallin, U, Kondo, E, Ozaki, Y, et al. Bcl-2 phosphorylation in the BH4 domain precedes caspase-3 activation and cell death after neonatal cerebral hypoxic-ischemic injury. Neurobiol Dis 2006;21:478–86.CrossRefGoogle ScholarPubMed
Gao, Y, Liang, W, Hu, X, et al. Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke 2010;41:166–72.CrossRefGoogle ScholarPubMed
Zhu, C, Wang, X, Huang, Z, et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 2007;14:775–84.CrossRefGoogle ScholarPubMed
Hagberg, H, Wilson, MA, Matsushita, H, et al. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem 2004;90:1068–75.CrossRefGoogle ScholarPubMed
Zhu, C, Wang, X, Deinum, J, et al. Cyclophilin A participates in the nuclear translocation of apoptosis-inducing factor in neurons after cerebral hypoxia-ischemia. J Exp Med 2007;204:1741–8.CrossRefGoogle ScholarPubMed
Wang, X, Carlsson, Y, Basso, E, et al. Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci 2009;29:2588–96.CrossRefGoogle ScholarPubMed
Wang, X, Han, W, Du, X, et al. Neuroprotective effect of Bax-inhibiting peptide on neonatal brain injury. Stroke 2010;41:2050–5.CrossRefGoogle ScholarPubMed
Gibson, ME, Han, BH, Choi, J, et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med 2001;7:644–55.Google ScholarPubMed
Parsadanian, AS, Cheng, Y, Keller-Peck, CR, et al. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci 1998;18:1009–19.CrossRefGoogle ScholarPubMed
Ness, JM, Harvey, CA, Strasser, A, et al. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia. Brain Res 2006;1099:150–9.CrossRefGoogle ScholarPubMed
Moll, UM, Wolff, S, Speidel, D, et al. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 2005;17:631–6.CrossRefGoogle ScholarPubMed
Nijboer, CH, Heijnen, CJ, van der Kooij, MA, et al. Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol 2011;70:255–64.CrossRefGoogle ScholarPubMed
Yang, DD, Kuan, CY, Whitmarsh, AJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997;389:865–70.CrossRefGoogle ScholarPubMed
Pirianov, G, Brywe, KG, Mallard, C, et al. Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury. J Cereb Blood Flow Metab 2007;27:1022–32.CrossRefGoogle ScholarPubMed
Croall, DE, DeMartino, GN. Calcium-activated neutral protease (calpain) system: structure, function and regulation. Physiol Rev 1991;71:813–47.CrossRefGoogle ScholarPubMed
Leist, M, Nicotera, P. Apoptosis, excitotoxicity and neuropathology. Exp Cell Res 1998;239:83–201.CrossRefGoogle ScholarPubMed
Kawamura, M, Nakajima, W, Ishida, A, et al. Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis. Brain Res 2005;1037:59–69.CrossRefGoogle ScholarPubMed
Degterev, A, Huang, Z, Boyce, M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005;1:112–9.CrossRefGoogle ScholarPubMed
Northington, FJ, Chavez-Valdez, R, Graham, EM, et al. Necrostatin decreases oxidative damage, inflammation and injury after neonatal HI. J Cereb Blood Flow Metab 2011;31:178–89.CrossRefGoogle ScholarPubMed
Shintani, T, Klionsky, DJ. Autophagy in health and disease: a double edged sword. Science 2004;306:990–5.CrossRefGoogle ScholarPubMed
Marino, G, Madeo, F, Kroemer, G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 2011;23:198–206.CrossRefGoogle ScholarPubMed
Zhu, C, Xu, F, Wang, X, et al. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 2006;96:1016–27.CrossRefGoogle ScholarPubMed
Koike, M, Shibata, M, Tadakoshi, M, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008;172:454–69.CrossRefGoogle ScholarPubMed
Kroemer, G, Levine, B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008;9:1004–10.CrossRefGoogle ScholarPubMed
Carloni, S, Buonocore, G, Balduini, W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis 2008;32:329–39.CrossRefGoogle ScholarPubMed
Park, HK, Chu, K, Jung, KH, et al. Autophagy is involved in the ischemic preconditioning. Neurosci Lett 2009;451:16–9.CrossRefGoogle ScholarPubMed
Halliwell, B. Reactive oxygen species and central nervous system. J Neurochem 1992;59:1609–23.CrossRefGoogle ScholarPubMed
Wang, H, Li, J, Follett, PL, et al. 12-Lipoxygenase plays a key role in cell death caused by glutathione depletion and arachidonic acid in rat oligodendrocytes. Eur J Neurosci 2004;20:2049–58.CrossRefGoogle Scholar
Bågenholm, R, Andine, P, Hagberg, H. Effects of the 21-amino steroid tirilazad mesylate (U-74006F) on brain damage and edema after perinatal hypoxia-ischemia in the rat. Pediatr Res 1996;40:399–403.CrossRefGoogle ScholarPubMed
Palmer, C, Towfighi, J, Roberts, R, et al. Allopurinol administered after inducing hypoxic-ischemia reduces brain injury in 7-day-old rats. Pediatr Res 1993;33:405–11.Google Scholar
Palmer, C, Roberts, RL, Bero, C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats. Stroke 1994;25:1039–45.CrossRefGoogle ScholarPubMed
Husson, I, Mesples, B, Bac, P, et al. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Ann Neurol 2002;51:82–92.CrossRefGoogle ScholarPubMed
Plaisant, F, Clippe, A, Vander Stricht, D, et al. The antioxidant peroxiredoxin-5 protects against excitotoxic brain lesions in newborn mice. Free Radic Biol Med 2003;7:862–72.CrossRefGoogle Scholar
Xia, WJ, Yang, M, Fok, TF, et al. Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia-ischemia brain damage. Pediatr Res 2005;58:784–90.CrossRefGoogle ScholarPubMed
Miura, S, Ishida, A, Nakajima, W, et al. Intraventricular ascorbic acid administration decreases hypoxic-ischemic brain injury in newborn rats. Brain Res 2006;1095:159–66.CrossRefGoogle ScholarPubMed
Nurmi, A, Goldsteins, G, Narvainen, J, et al. Antioxidant pyrrolidine dithiocarbamate activates Akt-GSK signaling and is neuroprotective in neonatal hypoxia-ischemia. Free Radic Biol Med 2006;40:1776–84.CrossRefGoogle ScholarPubMed
Domoki, F, Perciaccante, JV, Puskar, M, et al. Cyclooxygenase-2 inhibitor NS398 preserves neuronal function after hypoxia/ischemia in piglets. Neuroreport 2001;12:4065–8.CrossRefGoogle ScholarPubMed
Sheldon, RA, Osredkar, D, Lee, CL, et al. HIF-1 alpha-deficient mice have increased brain injury after neonatal hypoxia-ischemia. Dev Neurosci 2009;31:452–8.CrossRefGoogle ScholarPubMed
Hall, ED. Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 1995;13:79–83.CrossRefGoogle Scholar
Bona, E, Andersson, AL, Blomgren, K, et al. Chemokine and inflammatory cell response to hypoxia-ischemia in immature rats. Pediatr Res 1999;45:500–9.CrossRefGoogle ScholarPubMed
Doverhag, C, Keller, M, Karlsson, A, et al. Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 2008;31:133–44.CrossRefGoogle Scholar
Dawson, VL, Dawson, TM, Bartley, DA, et al. Mechanisms of nitric oxide-mediated neurotoxocity in primary brain cultures. J Neurosci 1993;13:2651–61.CrossRefGoogle Scholar
Jaffrey, SR, Snyder, SH. Nitric oxide: A neural messenger. Annu Rev Cell Dev Biol 1995;11:417–40.CrossRefGoogle ScholarPubMed
Iadecola, C, Ross, ME. Molecular pathology of cerebral ischemia: delayed gene expression and strategies for neuroprotection. Ann N Y Acad Sci 1997;835:203–17.CrossRefGoogle ScholarPubMed
Crow, JP, Beckman, JS. The role of peroxynitrite in nitric oxide-mediated toxicity. Curr Top Microbiol Immunol 1995;196:57–73.Google ScholarPubMed
Huang, Z, Huang, PL, Panahian, N, et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 1994;265:1883–5.CrossRefGoogle ScholarPubMed
Ferriero, DM, Sheldon, RA, Black, SM, et al. Selective destruction of nitric oxide synthase neurons with quisqualate reduces damage after hypoxia-ischemia in the neonatal rat. Pediatr Res 1995;38:912–8.CrossRefGoogle ScholarPubMed
Ferriero, DM, Holtzman, DM, Black, SM, et al. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 1996;3:64–71.CrossRefGoogle ScholarPubMed
Trifiletti, RR. Neuroprotective effects of NG-nitro-L-arginine in focal stroke in the 7-day old rat. Eur J Pharmacol 1992;218:197–8.CrossRefGoogle ScholarPubMed
Yu, L, Derrick, M, Ji, H, et al. Involvement of neuronal nitric oxide synthase in ongoing fetal brain injury following near-term rabbit hypoxia-ischemia. Dev Neurosci 2011;33:288–98.CrossRefGoogle Scholar
Blumberg, RM, Taylor, DL, Yue, X, et al. Increased nitric oxide synthesis is not involved in delayed cerebral energy failure following focal hypoxic-ischaemic injury in the developing brain. Pediatr Res 1999;46:224–31.CrossRefGoogle ScholarPubMed
Maragos, WF, Silverstein, FS. Resistance to nitroprusside neurotoxicity in perinatal rat brain. Neurosci Lett 1994;172:80–4.CrossRefGoogle ScholarPubMed
Kakizawa, H, Matsui, F, Tokita, Y, et al. Neuroprotective effect of nipradilol, an NO donor, on hypoxic-ischemic brain injury of neonatal rats. Early Hum Dev 2007;83:535–40.CrossRefGoogle ScholarPubMed
Olivier, P, Loron, G, Fontaine, RH, et al. Nitric oxide is a key factor for myelination of the developing brain. J Neuropathol Exp Neurol 2010;69:828–37.CrossRefGoogle Scholar
Dommergues, MA, Plaisant, F, Verney, C, et al. Early microglial activation following neonatal excitotoxic brain damage in mice: a potential target for neuroprotection. Neuroscience 2003;121:619–28.CrossRefGoogle ScholarPubMed
Hagberg, H, Rousset, CI, Wang, X, et al. Mechanisms of perinatal brain damage and protective possibilities. Drug Discovery Today: Disease Mechanisms 2006;3:397–407.CrossRefGoogle Scholar
Derugin, N, Wendland, M, Muramatsu, K, et al. Evolution of brain injury after transient middle cerebral artery occlusion in neonatal rats. Stroke 2000; 31:1752–61.CrossRefGoogle ScholarPubMed
McRae, A, Gilland, E, Bona, E, et al. Microglia activation after neonatal hypoxic-ischemia. Brain Res Dev Brain Res 1995;84:245–52.CrossRefGoogle ScholarPubMed
Jin, Y, Silverman, AJ, Vannucci, SJ. Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 2009;40:3107–12.CrossRefGoogle ScholarPubMed
Szaflarski, J, Burtrum, D, Silverstein, FS. Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats. Stroke 1995;26:1093–1100.CrossRefGoogle ScholarPubMed
Hagberg, H, Gilland, E, Bona, E, et al. Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia-ischemia in neonatal rats. Pediatr Res 1996;40:603–9.CrossRefGoogle ScholarPubMed
Silverstein, FS, Barks, JD, Hagan, P, et al. Cytokines and perinatal brain injury. Neurochem Int 1997;30:375–83.CrossRefGoogle ScholarPubMed
Hedtjarn, M, Leverin, AL, Eriksson, K, et al. Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci 2002;22:5910–19.CrossRefGoogle ScholarPubMed
Hedtjarn, M, Mallard, C, Hagberg, H. Inflammatory gene profiling in the developing mouse brain after hypoxia-ischemia. J Cereb Blood Flow Metab 2004;24:1333–51.CrossRefGoogle ScholarPubMed
Kim, SU, de Vellis, J. Microglia in health and disease. J Neurosci Res 2005;81:302–13.CrossRefGoogle ScholarPubMed
Giulian, D, Vaca, K. Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 1993;24:I84–90.Google ScholarPubMed
Liu, XH, Eun, BL, Silverstein, FS, et al. The platelet-activating factor antagonist BN 52021 attenuates hypoxic-ischemic brain injury in the immature rat. Pediatr Res 1996;40:797–803.CrossRefGoogle ScholarPubMed
Liu, XH, Kwon, D, Schielke, GP, et al. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic-ischemic brain damage. J Cereb Blood Flow Metab 1999;19:1099–1108.CrossRefGoogle ScholarPubMed
Ten, VS, Sosunov, SA, Mazer, SP, et al. C1q-deficiency is neuroprotective against hypoxic-ischemic brain injury in neonatal mice. Stroke 2005;36:2244–50.CrossRefGoogle ScholarPubMed
Mesples, B, Plaisant, F, Gressens, P. Effects of interleukin-10 on neonatal excitotoxic brain lesions in mice. Brain Res Dev Brain Res 2003;141:25–32.CrossRefGoogle ScholarPubMed
Aden, U, Favrais, G, Plaisant, F, et al. Systemic inflammation sensitizes the neonatal brain to excitoxicity through a pro-/anti-inflammatory imbalance: key role of TNF-alpha pathway and protection by etanercept. Brain Behav Immun 2010;24:747–58.CrossRefGoogle Scholar
Imai, F, Suzuki, H, Oda, J, et al. Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 2007;27:488–500.CrossRefGoogle ScholarPubMed
Cowell, RM, Plane, JM, Silverstein, FS. Complement activation contributes to hypoxic-ischemic brain injury in neonatal rats. J Neurosci 2003;23:9459–68.CrossRefGoogle ScholarPubMed
Denker, SP, Ji, S, Dingman, A, et al. Macrophages are comprised of resident brain microglia not infiltrating peripheral monocytes acutely after neonatal stroke. J Neurochem 2007;100:893–904.CrossRefGoogle Scholar
Mikita, J, Dubourdieu-Cassagno, N, Deloire, MS, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 2011;17:2–15.CrossRefGoogle ScholarPubMed
Arvin, KL, Han, BH, Du, Y, et al. Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 2002;52:54–61.CrossRefGoogle ScholarPubMed
Tsuji, M, Wilson, MA, Lange, MS, et al. Minocycline worsens hypoxic-ischemic brain injury in a neonatal mouse model. Exp Neurol 2004;189:58–65.CrossRefGoogle Scholar
Vexler, ZS, Yenari, MA. Does inflammation after stroke affect the developing brain differently than adult brain? Dev Neurosci 2009;31:378–93.CrossRefGoogle ScholarPubMed
Thoresen, M. Cooling the newborn after asphyxia - physiological and experimental background and its clinical use. Semin Neonatol 2000;5:61–73.CrossRefGoogle ScholarPubMed
Ma, D, Hossain, M, Chow, A, et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005;58:182–93.CrossRefGoogle ScholarPubMed
Faulkner, S, Bainbridge, A, Kato, T, et al. Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 2011;70:133–50.CrossRefGoogle ScholarPubMed
Liu, Y, Barks, JD, Xu, G, et al. Topiramate extends the therapeutic window for hypothermia-mediated neuroprotection after stroke in neonatal rats. Stroke 2004;35:1460–5.CrossRefGoogle ScholarPubMed
Barks, JD, Liu, YQ, Shangguan, Y, et al. Phenobarbital augments hypothermic neuroprotection. Pediatr Res 2010;67:532–7.CrossRefGoogle ScholarPubMed
Rogido, M, Husson, I, Bonnier, C, et al. Fructose-1,6-biphosphate prevents excitotoxic cell death in the neonatal mouse brain. Brain Res Dev Brain Res 2003;140:287–97.CrossRefGoogle ScholarPubMed
Colton, CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009;4:399–418.CrossRefGoogle Scholar
Lin, CY, Chang, YC, Wang, ST, et al. Altered inflammatory responses in preterm children with cerebral palsy. Ann Neurol 2010;68:204–12.Google ScholarPubMed
Holtzman, DM, Sheldon, RA, Jaffe, W, et al. Nerve growth factor protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 1996;39:114–22.CrossRefGoogle ScholarPubMed
Johnston, BM, Mallard, EC, Williams, CE, et al. Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic-ischemic injury in fetal lambs. J Clin Invest 1996;97:300–8.CrossRefGoogle ScholarPubMed
Gressens, P, Marret, S, Hill, JM, et al. Vasoactive intestinal peptide prevents excitotoxic hypoxic-like cell death in the murine developing brain. J Clin Invest 1997;100:390–7.CrossRefGoogle ScholarPubMed
Husson, I, Rangon, CM, Lelièvre, V, et al. BDNF-induced white matter neuroprotection and stage-dependant neuronal survival following a neonatal excitotoxic challenge. Cereb Cortex 2005;15:250–61.CrossRefGoogle Scholar
Osredkar, D, Sall, JW, Bickler, PE, et al. Erythropoietin promotes hippocampal neurogenesis in in vitro models of neonatal stroke. Neurobiol Dis 2010;38:259–65.CrossRefGoogle ScholarPubMed
Destot-Wong, KD, Liang, K, Gupta, SK, et al. The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology 2009;57:277–86.CrossRefGoogle ScholarPubMed
Welin, AK, Svedin, P, Lapatto, R, et al. Melatonin reduces inflammation and cell death in white matter in the 0.65 gestation fetal sheep following ombilical cord occlusion. Pediatr Res 2007; 61:153–8.CrossRefGoogle Scholar
Gitto, E, Reiter, RJ, Amodio, A, et al. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res 2004;36:250–5.CrossRefGoogle ScholarPubMed
Zhu, C, Kang, W, Xu, F, et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009;124:e218–26.CrossRefGoogle ScholarPubMed
Titomanlio, L, Bouslama, M, Le Verche, V, et al. Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury. Stem Cells Dev 2011;20:865–79.CrossRefGoogle ScholarPubMed
Covey, MV, Jiang, Y, Alli, VV, et al. Defining the critical period for neocortical neurogenesis after pediatric brain injury. Dev Neurosci 2010;32:488–98.Google ScholarPubMed
Favrais, G, van de Looij, Y, Fleiss, B, et al. Systemic inflammation disrupts the developmental program of the white matter. Ann Neurol 2011;70:550–65.CrossRefGoogle ScholarPubMed
Leviton, A, Gressens, P. Neuronal damage accompanies perinatal white matter damage. Trends Neurosci 2007;30:473–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×