Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: April 2016

5 - Nanowire Electronic Structure



The electronic structure of a semiconductor nanowire can vary substantially with respect to bulk material properties due to orientation, diameter, strain, quantum confinement, and surface effects. Before introducing the electronic structure of nanowires, the crystal structures of common group IV and III-V binary compounds are introduced. Semiconductor nanowires, even for diameters of a few nanometers, can retain the bonding characteristic of their bulk crystalline forms. This permits classification of nanowires by the crystal orientation aligned to the nanowire long, axial, or “growth” axis. To determine electronic structures of materials generally requires a combination of experimental and theoretical approaches in a fruitful collaboration whereby the strengths of several methods are used to complement one another. Elementary analysis of band structures is considered in relation to the observed properties of materials leading to their categorization as insulators, semiconductors, semimetals, and metals. These basic material categories are the fundamental building blocks for nanoelectronic devices. A brief discussion of experimental and theoretical methods for the determination of electronic properties is given to provide background on the state-of-the-art for electronic structure characterization and calculations. The electronic band structures of common bulk semiconductors are presented for reference. Atomic scale models for nanowires oriented along different crystal directions are introduced with the relationship between confinement normal to a nanowire's long axis and electronic structure expressed in terms of band folding. Representative electronic band structures are then introduced for different nanowire systems based on diameter and orientation to highlight the key effects of reduced dimensionality on electronic structure.

Semiconductor crystal structures: group IV and III-V materials

Group IV bonding and the diamond crystal structure

Silicon crystallizes in a cubic crystal structure that has the same symmetry as the diamond form of carbon. This structure is referred to as the diamond cubic crystal structure or sometimes more colloquially as the “diamond lattice.” The local bonding characteristic of the diamond crystal structure is largely retained when nanowires are patterned from crystalline silicon or grown from bottom-up processes such as those described in Chapter 3. In the diamond structure, each atom is tetrahedrally bonded to four nearest neighbor atoms. Many materials can also exist in amorphous form whereby the long-range order of a crystal is lost.

Related content

Powered by UNSILO
Davies, J. H., The Physics of Low-dimensional Semiconductors: An Introduction, Cambridge: Cambridge University Press, 1998.
Harrison, W. A., Electronic Structure and the Properties of Solids, New York: Dover, 1989.
Martin, R. M., Electronic Structure: Basic Theory and Practical Methods, Cambridge: Cambridge University Press, 2004.
McWeeny, R., Methods of Molecular Quantum Mechanics, London: Academic Press, 1993.
Shavitt, I. and Bartlett, R. J., Many-Body Methods in Chemistry and Physics, Cambridge: Cambridge University Press, 2009.
[1] Numerical Data and Functional Relationships in Science and Technology, Group III, vols. 17a and 22a, ed. Hellwege, K.-H. and Madelung, O., Berlin: Springer, 1982.
[2] Paul, W., “Band structure of the intermetallic semiconductors from pressure experiments,” J. Appl. Phys., vol. 32, pp. 2082–2094, 1961.
[3] Fahy, S. and Greer, J. C., “Alloy corrections to the virtual crystal approximation and explicit band structure calculations for silicon-germanium,” Mat. Sci. in Semicond. Proc., vol. 3, pp. 109–114, 2000.
[4] Chuang, S. L., Physics of Photonics Devices, Hoboken, NJ: John Wiley and Sons, 2009.
[5] Wolfe, C. M., Stillman, G. E., and Lindley, W. T., “Electron mobility in high purity GaAs,” J. Appl. Phys., vol. 41, pp. 3088–3091, 1970.
[6] Vurgaftman, I., Meyer, J. R., and Ram-Mohan, L. R, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815–5875, 2001.
[7] Alamo, J. A. del, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317–323, 2011.
[8] Hurley, P. al., “Structural and electrical properties of HfO2/n-InxGa1-xAs structures (x: 0, 0.15, 0.3 and 0.53),” Physics and Technology of High-K Gate Dielectrics, vol. 25, pp. 113–127, 2009.
[9] Gu, J. J. al., “Size-dependent-transport study of In0.53Ga0.47As gate-all-around nanowire MOSFETs: impact of quantum confinement and volume inversion,” IEEE Electr. Dev. Lett., vol. 33, pp. 967–969, 2012.
[10] Takeda, Y., Sasaki, A., Imamura, Y., and Takagi, T., “Electron mobility and energy gap of In0.53Ga0.47As on InP substrate,” J. Appl. Phys., vol. 47, pp. 5405–5408, 1976.
[11] Novoselov, K. S., Geim, A. K., Morozov, S. V., et al., “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666–669, 2004.
[12] Allen, M. J., Tung, V. C., and Kaner, R. B., “Honeycomb carbon: A review of graphene,” Chem.Rev. vol. 110, pp. 132–145, 2010.
[13] Long, B., Manning, M., Burke, M., et al., “Non-covalent functionalization of graphene using self-assembly of alkane-amines,” Adv. Funct. Mater., vol. 22, pp. 717–725, 2012.
[14] Endo, M., Iijima, S., and Dresselhaus, M. S., Carbon Nanotubes, Oxford: Pergamon Press, 1996.
[15] Iijima, S., “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56–58, 1991.
[16] Greene-Diniz, G., Jones, S. L. T., Fagas, al., “Divacancies in carbon nanotubes and their influence on electron scattering,” J. Phys.: Condens. Matt., vol. 26, pp. 045303-1–045303-8, 2014.
[17] Svensson, J. and Campbell, E. E. B., “Schottky barriers in carbon nanotube-metal contacts,” J. Appl. Phys., vol. 110, pp. 111101-1–111101-16, 2011.
[18] Jones, S. L. T., Greene-Diniz, G., Haverty, M. G., Shankar, S., and Greer, J. C., “Effects of structure on the electronic properties of the iron-carbon nanotube interface,” Chem. Phys. Lett., vol. 615, pp. 11–15, 2014.
[19] Guo, J., Hasan, S., Javey, A., Bosman, G., and Lundstrom, M., “Assessment of high frequency performance of carbon nanotube transistors,” IEEE Trans. Nanotech., vol. 4, pp. 715–721, 2005.
[20] Ansari, L., Feldman, B., Fagas, al., “First principle-based analysis of single-walled carbon nanotube and silicon nanowire junctionless transistors,” IEEE Trans. Nanotech., vol. 12, pp. 1075–1081, 2013.
[21] Wang, Q. H., Kalantar-Zadeh, K. K., Kis, A., Coleman, J. N., and Strano, M. S., “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech., vol. 7, pp. 699–712, 2012.
[22] Canivez, Y., “Quick and easy measurement of the band gap in semiconductors,” Eur. J. Phys., vol. 4, pp. 42–44, 1983.
[23] Workman, J. Jr. and Springsteen, A., Applied Spectroscopy: A Compact Reference for Practitioners, London: Academic Press, 1997.
[24] Tauc, J., Optical Properties of Amorphous Semiconductors, New York: Plenum Publishers, 1974.
[25] Kubby, J. A. and Boland, J. J., “Scanning tunneling microscopy of semiconductor surfaces,” Surf. Sci. Rep., vol. 26, pp. 61–204, 1996.
[26] Nilius, N., Wallis, T. M., and Ho, W., “Development of a one-dimensional band structure in artificial gold chains,” Science, vol. 297, pp. 1853–1856, 2002.
[27] Lu, X., Grobis, M., Khoo, K. H., Louie, S. G., and Crommie, M. F., Phys. Rev. Lett., vol. 90, pp. 096802-1–096802-4, 2003.
[28] Larsson, J. A., Elliott, S. D., Greer, J. C., Repp, J., Meyer, G., and Allensprach, R., “Orientation of single C60 molecules adsorbed on Cu(111): low temperature scanning tunnelling microscopy and density functional calculations,” Phys. Rev. B, vol. 77, pp. 115434-1–115434-9, 2008.
[29] Bardeen, J., “Tunnelling from a many-particle point of view,” Phys. Rev. Lett., vol. 6, pp. 57–59, 1961.
[30] Feenstra, R. M., Stroscio, J. A., and Fein, A. P., “Tunneling spectroscopy of the Si(111) 2x1 surface,” Surface Science, vol. 181, pp. 295–306, 1987.
[31] Ma, D. D. D., Lee, C. S., Au, F. C. K., Tong, S. Y., and Lee, S. T., “Small-diameter silicon nanowire surfaces,” Science, vol. 299, pp. 1874–1877, 2003.
[32] Damascelli, A., Hussain, Z., and Shen, Z.-X., “Angle-resolved photoemission studies of the cuprate superconductors,” Rev. Mod. Phys., vol. 75, pp. 473–539, 2003.
[33] Born, M. and Oppenheimer, J. R., “Zur Quantentheorie der Molekeln,” Annalen der Physik, vol. 84, pp. 457–484, 1927.
[34] Heisenberg, W., “Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen,” Z. für Physik., vol. 33, pp. 879–893, 1925.
[35] Schrödinger, E., “Quantisierung als Eigenwertproblem,” Ann. der Physik, vol. 79, pp. 361–376, 1926.
[36] Dirac, P. A. M., “On the theory of quantum mechanics,” Proc. Roy. Soc. A, vol. 112, pp. 661–677, 1926.
[37] Hartree, D. R., “The wave mechanics of an atom with a non-Coulomb central field: part I, theory and methods,” Proc. Camb. Phil. Soc., vol. 24, pp. 89–110, 1928.
[38] Fock, V., “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems,” Z. Physik, vol. 61, pp. 126–148, 1930.
[39] Dirac, P. A. M., “Quantum mechanics of many-electron systems,” Proc. Roy. Soc. London A, vol. 123, pp. 714–733, 1929.
[40] Slater, J. C., “The theory of complex spectra,” Phys. Rev., vol. 34, 1293–1322, 1929.
[41] Koopmans, T., “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms,” Physica, vol. 1, pp. 104–113, 1934.
[42] Pickup, B. T. and Goscinski, O., “Direct calculation of ionization energies,” Mol. Phys., vol. 26, pp. 1013–1035, 1973.
[43] Bartlett, R. J. and Stanton, J. F., “Applications of post Hartree–Fock methods: a tutorial,” Rev. Comp. Chem., vol. 5, pp. 65–169, 1993.
[44] Wigner, E., “On the interaction of electrons in metals,” Phys. Rev., vol. 46, pp. 1002–1011, 1934.
[45] Thomas, L. H., “The calculation of atomic fields,” Proc. Cambridge Phil. Soc., vol. 23, pp. 542–548, 1927.
[46] Fermi, E.Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo,” Rend. Accad. Naz. Lince, vol. 6, pp. 602–607, 1927.
[47] Hohenberg, P. and Kohn, W., “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–B871, 1964.
[48] Kohn, W. and Sham, L. J., “Self-consistent equations including exchange and correlation effects,” Phys. Rev., vol. 140, pp. A1133–A1138, 1965.
[49] Yeriskin, I., McDermott, S., Bartlett, R. J., Fagas, G. and Greer, J. C., “Electronegativity and electron currents in molecular tunnel junctions,” J. Phys. Chem. C, vol. 114, pp. 20564–20568, 2010.
[50] Beste, A. and Bartlett, R. J., “Independent particle theory with electron correlation,” J. Chem. Phys., vol. 120, pp. 8395–8404, 2004.
[51] Bartlett, R. J., McClellan, J., Greer, J. C., and Monaghan, S., “Quantum mechanics at the core of multi-scale simulations,” J. Comp. Aided Mat. Design, vol. 13, pp. 89–109, 2006.
[52] Aryasetiawany, F. and Gunnarsson, O., “The GW method,” Rep. Prog. Phys., vol. 61, pp. 237–312, 1998.
[53] Schilfgaarde, M. van, Kotani, Takao, and Faleev, S., “Quasiparticle self-consistent GW theory,” Phys. Rev. Lett., vol. 96, pp. 226402-1–226402-4, 2006.
[54] Neaton, J. B., Hybertsen, M. S. and Louie, S. G., “Renormalization of molecular electronic levels at metal-molecule interfaces,” Phys. Rev. Lett., vol. 97, pp. 216405-1–216405-4, 2006.
[55] Garcia-Lastra, J. M., Rostgaard, C., Rubio, A., and Thygesen, K. S., “Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces,” Phys. Rev. B, vol. 80, pp. 245427-1–245427-7, 2009.
[56] Turton, R. J., “Band Structure of Si: Overview,” in Properties of Crystalline Silicon, Hull, R., London: INSPEC, the Institution of Electrical Engineers, 2004, pp. 381–382.
[57] Stern, F. and Howard, W. E., “Properties of semiconductor inversion layers in the electric quantum limit,” Phys. Rev. B, vol. 163, pp. 816–835, 1967.
[58] Huang, L., Lu, N., Yan, J.-A., Chou, M. Y., Wang, C.-Z., and Ho, K.-M., “Size and strain-dependent electronic structures in H-passivated Si [112] nanowires,” J. Chem. Phys. C, vol. 112, pp. 15680–15683, 2008.
[59] Yan, J.-A. and Chou, M.-Y., “Size and orientation dependence in the electronic properties of silicon nanowires,” Phys. Rev. B, vol. 76, pp. 115319-1–115319-6, 2007.
[60] Zhao, X., Wei, C. M., Yang, L., and Chou, M. Y., “Quantum confinement and electronic properties in silicon nanowires,” Phys. Rev. Lett., vol. 92, pp. 236805-1–236805-4, 2004.
[61] Mohammad, S. Noor, “Understanding quantum confinement in nanowires: basics, applications and possible laws,” J. Phys.: Condens. Matt., vol. 26, pp. 423202-1–423202-28, 2014.
[62] Nolan, M., 'Callaghan, S., Fagas, G. and Greer, J. C., “Silicon nanowire band gap modification,” Nano Lett., vol. 7, pp. 34–38, 2007.
[63] Zhuo, K. and Chou, M.-Y., “Surface passivation and orientation dependence in the electronic properties of silicon nanowires,” J. Phys.: Condens. Matt., vol. 25, pp. 145501-1–145501-11, 2013.
[64] Niquet, Y. M., Lherbier, A., Quang, N. H., Fernández-Serra, M. V., Blasé, X., and Delerue, C., “Electronic structure of semiconductor nanowires,” Phys. Rev. B, vol. 73, pp. 165319-1–165319-13, 2006.