Datta, S., Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995.
Ferry, D.K. and Goodnick, S.M., Transport in Nanostructures, Cambridge: Cambridge University Press, 1997.
Mahan, G.D., Many-Particle Physics, New York: Kluwer Academic/Plenum Publishers, 2000.
Economou, E.N., Green's Functions in Quantum Physics, Berlin: Springer Verlag, 2006.
[1] Mingo, N., Yang, L., Li, D., and Majumdar, A., “Predicting the thermal conductivity of silicon and germanium nanowires,” Nano Lett., vol. 3, pp. 1713–1716, 2003.
[2] Pop, E., Sinha, S., and Goodson, K.E., “Heat generation and transport in nanometer-scale transistors,” Proc. IEEE, vol. 94, pp. 1587–1601, 2006.
[3] Frensley, W.R., “Boundary conditions for open quantum systems driven far from equilibrium,” Rev. Mod. Phys., vol. 62, pp. 745–791, 1990.
[4] Landauer, R., “Spatial variation of currents and fields due to localized scatterers in metallic conduction,” IBM J. Res. Devel., vol. 1, pp. 223–231, 1957.
[5] Greer, J.C., “Variational method with scattering boundary conditions imposed by the Wigner function,” Phys. Rev. B, vol. 83, pp. 245413-1–245413-11, 2011.
[6] Weber, L. and Gmelin, E., “Transport properties of silicon,” Appl. Phys. A, vol. 53, pp. 136–140, 1991.
[7] Caughey, D.M. and Thomas, R.E., “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, vol. 55, pp. 2192–2193, 1967.
[8] Balestra, F. (ed.), Nanoscale CMOS: Innovative Materials Modeling and Characterization, Chapter 15, pp. 545–566, Wiley (2010).
[9] Rurali, R., Markussen, T., Suñé, J., Brandbyge, M., and Jauho, A.-P., “Modeling transport in ultra-thin silicon nanowires: charged versus neutral impurities,” Nano Lett., vol. 8, pp. 2825–2828, 2008.
[10] Diarra, M., Niquet, Y.-M., Delerue, C., and Allan, G., “Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement,” Phys. Rev. B, vol. 75, pp. 045301-1–045301-4, 2007.
[11] Ansari, L., Feldman, B., Fagas, G., Colinge, J.-P., and Greer, J.C., “Sub-threshold behavior of junctionless silicon nanowire transistors from atomic scale simulations,” Solid-State Elect., vol. 71, pp. 58–62, 2012.
[12] Fischetti, M.V., Neumayer, D.A., and Cartier, E.A., “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: the role of remote phonon scattering,” J. Appl. Phys., vol. 90, pp. 4587–4608, 2001.
[13] Chau, R., Datta, S., Doczy, M., Doyle, B., Kavalieros, J., and Metz, M., “High-/metal-gate stack and its MOSFET characteristics,” IEEE Elect. Dev. Lett., vol. 25, pp. 408–410, 2004.
[14] Heyns, M. and Tsai, W. (eds.), “Ultimate scaling of CMOS logic devices with Ge and III–V materials,” MRS Bulletin, vol. 34, 2009.
[15] Monaghan, S., Greer, J.C., and Elliott, S.D., “Atomic scale model interfaces between high-k hafnium silicates and silicon,” Phys. Rev. B, vol. 75, pp. 245304-1–245304-14, 2007.
[16] Sakaki, H., “Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures,” Jpn. J. Appl. Phys., vol. 19, pp. L735–L738, 1980.
[17] Murphy-Armando, F. and Fahy, S., “First-principles calculation of carrier-phonon scattering in n-type Si1−xGex alloys,” Phys. Rev. B, vol. 78, pp. 035202-1–035201-14, 2008.
[18] Mikkelsen, J.C. Jr. and Boyce, J.B., “Atomic-scale structure of random solid solutions: extended X-ray-absorption fine-structure study of Ga1−xInxAs,” Phys. Rev. Lett., vol. 49, pp. 1412–1415, 1982.
[19] Hannon, J.B., Kodambaka, S., Ross, F.M., and Tromp, R.M., “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature, vol. 440, pp. 69–71, 2006.
[20] Wu, Z., Neaton, J.B., and Grossman, J.C., “Quantum confinement and electronic properties of tapered silicon nanowires,” Phys. Rev. Lett., vol. 100, pp. 246804-1–246804-4, 2008.
[21] Lherbier, A., Persson, M., Niquet, Y.-M., Triozon, F., and Roche, S., “Quantum transport length scales in silicon-based semiconducting nanowires: surface roughness effects,” Phys. Rev. B, vol. 77, pp. 085301-1–085301-5, 2008.
[22] Ramayya, E.B., Vasileska, D., Goodnick, S.M., and Knezevic, I., “Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering,” J. Appl. Phys., vol. 104, pp. 063711-1–063711-14, 2008.
[23] Adu, K.W., Gutiérrez, H.R., Kim, U.J., Sumanasekera, G.U., and Eklund, P.C., “Confined phonons in Si nanowires,” Nano Lett., vol. 5, pp. 409–414, 2005.
[24] Luisier, M. and Klimeck, G., “Atomistic full-band simulations of silicon nanowire transistors: effects of electron-phonon scattering,” Phys. Rev. B, vol. 80, pp. 155430-1–1554301-11, 2009.
[25] Murphy-Armando, F., Fagas, G., and Greer, J.C., “Deformation potentials and electron-phonon coupling in silicon nanowires,” Nano Lett., vol. 10, pp. 869–873, 2010.
[26] Haldane, F.D.M., “Luttinger liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas,” J. Phys. C: Solid State Phys., vol. 14, pp. 2585–2609, 1981.
[27] Kane, C.L. and Fisher, M.P.A., “Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas,” Phys. Rev. B, vol. 46, pp. 15233–15262, 1992.
[28] Delaney, P. and Greer, J.C., “Correlated electron transport in molecular electronics,” Phys. Rev. Lett., vol. 93, pp. 036805–036808, 2004.
[29] Fagas, G. and Greer, J.C., “Tunnelling in alkanes anchored to gold electrodes via amine groups,” Nanotechnology, vol. 18, pp. 424010-1–424010-4, 2007.
[30] McDermott, S. and Greer, J.C., “Many-electron scattering applied to atomic point contacts,” J. Phys.: Condens. Matter, vol. 24, pp. 125602-1–125602-9, 2012.
[31] Anderson, P.W., Thouless, D.J., Abrahams, E., and Fisher, D.S., “New method for a scaling theory of localization,” Phys. Rev. B, vol. 22, pp. 3519–3526, 1980.
[32] Markussen, T., Rurali, R., Jauho, A.-P., and Brandbyge, M., “Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires,” Phys. Rev. Lett., vol. 99, pp. 076803-1–076803-4, 2007.
[33] Greene-Diniz, G., Jones, S., Fagas, G., et al., “Divacancies in carbon nanotubes and their influence on electron scattering,” J. Phys.: Condens. Matt., vol. 26, pp. 045303-1–45303-8, 2014.
[34] Fagas, G. and Greer, J.C., “Ballistic conductance in oxidized Si nanowires,” Nano Lett., vol. 9, pp. 1856–1860, 2009.
[35] Kelly, M.J., “Transmission in one-dimensional channels in the heated regime,” J. Phys.: Condens. Matter, vol. 1, pp. 7643–7649, 1989.
[36] Forbes, R.G. and Deane, J.H.B., “Transmission coefficients for the exact triangular barrier: an exact general analytical theory that can replace Fowler & Nordheim's 1928 theory,” Proc. R. Soc. A, doi:10.1098/rspa.2011.0025, 2011.
[37] Kadanoff, L.P. and Baym, G., Quantum Statistical Mechanics.Reading, MA: Benjamin-Cummings, 1962.
[38] Keldysh, L.V., Zh. Eksp. Teor. Fiz., Vol. 47, pp. 1515–1527, 1964 [translated in Sov. Phys. JETP, vol. 20, pp. 1018–1026, 1965].
[39] Lake, R. and Datta, S., “Non-equilibrium Green's function method applied to double-barrier resonant-tunneling diodes,” Phys. Rev. B, vol. 45, pp. 6670–6685, 1992.
[40] Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., and Stokbro, K., “Density-functional method for nonequilibrium electron transport,” Phys. Rev. B, vol. 65, pp. 165401-1–165401-17, 2002.
[41] Grosche, C., “Path integration via summation of perturbation expansions and applications to totally reflecting boundaries, and potential steps,” Phys. Rev. Lett., vol. 71, pp. 1–4, 1993.
[42] Aguiar, M.A.M. de, “Exact Green's function for the step and square-barrier potentials,” Phys. Rev. A., vol. 48, pp. 2567–2573, 1993.
[43] Sancho, M.P. López, Sancho, J.M. López, and Rubio, J., “Highly convergent schemes for the calculation of bulk and surface Green's functions,” J. Phys. F: Met. Phys., vol. 15, pp. 851–858, 1984.
[44] Ke, S.-H., Baranger, H.U., and Yang, W., “Electron transport through molecules: Self-consistent and non-self-consistent approaches,” Phys. Rev. B, vol. 70, pp. 085410-1–085410-12, 2004.
[45] Sharma, D., Ansari, L., Feldman, B., Iakovidis, M., Greer, J.C., and Fagas, G., “Transport properties and electrical device characteristics with the TiMeS computational platform: application in silicon nanowires,” J. Appl. Phys., vol. 113, pp. 203708-1–203708-8, 2013.