Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T04:29:56.843Z Has data issue: false hasContentIssue false

3 - Pathogenetic mechanisms underlying myelodysplastic syndromes

Published online by Cambridge University Press:  22 August 2009

Peter L. Greenberg
Affiliation:
Stanford University Cancer Center, Stanford, and VA Palo Alto Health Care System, Palo Alto, CA, USA
Peter L. Greenberg
Affiliation:
Stanford University School of Medicine, California
Get access
Type
Chapter
Information
Myelodysplastic Syndromes
Clinical and Biological Advances
, pp. 63 - 94
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greenberg, P. L. (2000). The myelodysplastic syndromes. In Hematology: Basic Principles and Practice, 3rd edn, ed. , R. Hoffman, , E. Benz, , S. Shattil, and , H. Cohen. New York: Churchill Livingstone, pp. 1106–29Google Scholar
Metcalf, D. (1986). The molecular biology and functions of the granulocyte-macrophage colony stimulating factors. Blood, 67, 257–67Google ScholarPubMed
Verbeek, W., Vehmeyer, K., Wormann, B.et al. (1995). The effect of stem-cell factor, interleukin-3 and erythropoietin on in vitro erythropoiesis in myelodysplastic syndromes. J. Cancer Res. Clin. Oncol., 121, 338–42CrossRefGoogle ScholarPubMed
Williams, G. T., Smith, C., Spooncer, E., Dexter, T. M., and Taylor, D. R. (1990). Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature, 343, 76CrossRefGoogle ScholarPubMed
Jacobs, A., Janowska, A., Caro, J.et al. (1989). Circulating erythropoietin in patients with myelodysplastic syndrome. Br. J. Haematol., 73, 36CrossRefGoogle Scholar
Greenberg, P. L., MacKichan, M., Negrin, R., Renick, M., and Ginzton, N. (1990). Production of granulocyte colony stimulating factor by normal and myelodysplastic syndrome peripheral blood cells. Blood, 76 (suppl. 1), 146Google Scholar
Verhoef, G. E., DeSchouwer, P., Ceuppens, J. L.et al. (1992). Measurement of serum cytokine levels in patients with myelodysplastic syndromes. Leukemia, 6, 1268Google ScholarPubMed
Axelrad, A. (1990). Some hemopoietic negative regulators. Exp. Hematol., 18, 143–50Google ScholarPubMed
Deeg, H. J., Beckham, C., Loken, M. R.et al. (2000). Negative regulators of hemopoiesis and stroma function in patients with myelodysplastic syndrome. Leuk. Lymphoma, 37, 405–14Google ScholarPubMed
Gersuk, G. M., Lee, J., Beckham, C. A., Anderson, J., and Deeg, J. H. (1996). Fas (CD95) receptor and Fas-ligand expression in bone marrow cells from patients with myelodysplastic syndrome. Blood, 88, 1122Google ScholarPubMed
Pruneri, G., Bertolini, F., Soligo, D.et al. (1999). Angiogenesis in myelodysplastic syndromes. Br. J. Cancer, 81, 1398–401CrossRefGoogle ScholarPubMed
Greenberg, P. L. (1992). Treatment of MDS with hemopoietic growth factors. Semin. Oncol., 19, 106Google Scholar
Nagler, A., Ginzton, N., Bangs, C.et al. (1990). In vitro differentiative and proliferative effects of human recombinant colony-stimulating factors on marrow hemopoiesis in myelodysplastic syndromes. Leukemia, 4, 193–202Google ScholarPubMed
Broxmeyer, H. E., Lu, L., Platzer, E.et al. (1983). Comparative analysis of the influence of human gamma, alpha, and beta interferons on human multipotential, erythroid and granulocyte-macrophage progenitor cells. J. Immunol., 131, 1300–5Google Scholar
Peetre, C., Gullberg, U., Nilsson, E.et al. (1986). Effects of recombinant tumor necrosis factor on proliferation and differentiation of leukemic and normal hemopoietic cells in vitro: relationship to cell surface receptor. J. Clin. Invest., 78, 1694–700CrossRefGoogle ScholarPubMed
Murase, T., Hofta, T., Saito, H.et al. (1987). Effect of recombinant human tumor necrosis factor on the colony growth of human leukemia progenitor cells and normal hematopoietic progenitor cells. Blood, 69, 467–72Google ScholarPubMed
Shetty, V., Mundle, S., Alvi, S.et al. (1996). Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk. Res., 20, 891–900CrossRefGoogle ScholarPubMed
Budel, L. M., Dong, F., Lowenberg, B.et al. (1995). Hematopoietic growth factor receptors: structure variations and alternatives of receptor complex formation in normal hematopoiesis and in hematopoietic disorders. Leukemia, 9, 553–61Google ScholarPubMed
Bouscary, D., Vos, J., Guesnu, M.et al. (1997). Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia, 11, 839–45CrossRefGoogle ScholarPubMed
Zang, D. Y., Goodwin, R., Loken, M. R., Bryant, E., and Deeg, H. J. (2001). Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood, 98, 3058–65CrossRefGoogle ScholarPubMed
Goossens, V., Grooten, J., Vos, K., and Fiers, W. (1995). Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl Acad. Sci. U.S.A., 92, 8115CrossRefGoogle ScholarPubMed
Peddie, C., Wolf, R., McLellan, L., Collins, A. R., and Bowen, T. (1997). Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-α concentration. Br. J. Haematol., 99, 625CrossRefGoogle ScholarPubMed
Farquhar, M. J. and Bowen, D. (2003). Oxidative stress and the myelodysplastic syndromes. Int. J. Hematol., 77, 342–50CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Selleri, C., Anderson, S., and Young, N. (1995). Fas antigen expression in CD34+ human marrow cells is induced by interferon-α and tumor necrosis factor-α and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood, 85, 3183Google ScholarPubMed
Gersuk, G., Beckham, C., Loken, M.et al. (1998). A role for TNF-α, Fas and Fas ligand in marrow failure associated with myelodysplastic syndrome. Br. J. Haematol., 103, 176–88CrossRefGoogle ScholarPubMed
Massague, J. (1987). The TGF-beta family of growth and differentiation factors. Cell, 49, 437–8CrossRefGoogle ScholarPubMed
Sing, G. K., Keller, J., Ellingsworth, J. R.et al. (1988). Transforming growth factor beta selectively inhibits normal and leukemic human bone marrow cell growth in vitro. Blood, 72, 1504–11Google ScholarPubMed
Broxmeyer, H. E., Sherry, B., Cooper, S., Lu, L.et al. (1993). Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells. J. Immunol., 150, 3448–58Google ScholarPubMed
Schmidt-Mende, J., Tehranchi, R., Forsblom, A. M., Joseph, B.et al. (2001). Granulocyte colony-stimulating factor inhibits Fas-triggered apoptosis in bone marrow cells isolated from patients with refractory anemia with ringed sideroblasts. Leukemia, 15, 742–51CrossRefGoogle ScholarPubMed
Tehranchi, R., Fadeel, B., Forsblom, A. M.et al. (2003). Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood, 101, 1080–6CrossRefGoogle ScholarPubMed
Aizawa, S., Nakano, M., Iwase, O.et al. (1999). Bone marrow stroma from refractory anemia of myelodysplastic syndrome is defective in its ability to support normal CD34-positive cell proliferation and differentiation in vitro. Leuk. Res., 23, 239–46CrossRefGoogle ScholarPubMed
Tennant, G. B., Walsh, V., Truran, L. N.et al. (2000). Abnormalities of adherent layers grown from bone marrow of patients with myelodysplasia. Br. J. Haematol., 111, 853–62Google ScholarPubMed
Coutinho, L. H., Geary, C., Chang, J., Harrison, C., and Testa, N. G. (1990). Functional studies of bone marrow haemopoietic and stromal cells in the myelodysplastic syndrome (MDS). Br. J. Haematol., 75, 16–25CrossRefGoogle Scholar
Tauro, S., Hepburn, M., Peddie, C. M., Bowen, D. T., and Pippard, M. J. (2002). Functional disturbance of marrow stromal microenvironment in the myelodysplastic syndromes. Leukemia, 16, 785–90CrossRefGoogle ScholarPubMed
Borojevic, R., Roela, R., Rodarte, R. S.et al. (2004). Bone marrow stroma in childhood myelodysplastic syndrome: composition, ability to sustain hematopoiesis in vitro, and altered gene expression. Leuk. Res., 28, 831–44CrossRefGoogle ScholarPubMed
Duhrsen, U., Martinez, T., Vohwinkel, G.et al. (2001). Effects of vascular endothelial and platelet-derived growth factor receptor inhibitors on long-term cultures from normal human bone marrow. Growth Factors, 19, 1–17CrossRefGoogle ScholarPubMed
Carvalho, M. A., Arcanjo, K., Silva, L. C., and Borojevic, R. (2000). The capacity of connective tissue stromas to sustain myelopoiesis depends both upon the growth factors and the local intercellular environment. Biol. Cell, 92, 605–14CrossRefGoogle ScholarPubMed
Ferrara, N. and Alitalo, K. (1999). Clinical applications of angiogeneic growth factors and their inhibitors. Nat. Med., 5, 1359–64CrossRefGoogle Scholar
Bellamy, W. T., Richer, L., Sirjani, D.et al. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood, 97, 1427–34CrossRefGoogle ScholarPubMed
List, A. F. (2001). Vascular endothelial growth factor signaling pathway as an emerging target in hematologic malignancies. Oncologist, 6 (suppl. 5), 24–31CrossRefGoogle ScholarPubMed
Zhang, L., Eastmond, D., and Smith, M. T. (2002). The nature of chromosomal aberrations detected in humans exposed to benzene. Crit. Rev. Toxicol., 32, 1–42CrossRefGoogle Scholar
Aguayo, A., Kantarjian, H., Manshouri, T.et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–5Google ScholarPubMed
Platanias, L. C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood, 101, 4667–79CrossRefGoogle ScholarPubMed
Verma, A., Deb, D., Sassano, A.et al. (2002). Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J. Biol. Chem., 277, 7726–35CrossRefGoogle ScholarPubMed
Verma, A., Deb, D., Sassano, A.et al. (2002). Cutting edge: activation of the p38 mitogen-activated protein kinase signaling pathway mediates cytokine-induced hemopoietic suppression in aplastic anemia. J. Immunol., 168, 5984–8CrossRefGoogle ScholarPubMed
Cortelezzi, A., Cattaneo, C., Cristiani, S.et al. (2000). Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis?Hematol. J., 1, 153–8CrossRefGoogle ScholarPubMed
Hofmann, W. K., Vos, S., Komor, M.et al. (2002). Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood, 100, 3553–60CrossRefGoogle ScholarPubMed
Bowen, D., Wang, L., Frew, M., Kerr, R., and Groves, M. (2003). Antioxidant enzyme expression in myelodysplastic and acute myeloid leukemia bone marrow: further evidence of a pathogenetic role for oxidative stress?Haematologica, 88, 1070–2Google ScholarPubMed
Hershko, C., Link, G., and Cabantchik, I. (1996). Pathophysiology of iron overload. Ann. N.Y. Acad. Sci., 850, 191CrossRefGoogle Scholar
Olivieri, N. and Brittenham, G. (1997). Iron-chelating therapy and the treatment of thalassemia. Blood, 89, 739Google ScholarPubMed
Jensen, P. D., Heickendorff, L., Pedersen, B.et al. (1996). The effect of iron chelation on haemopoiesis in MDS patients with transfusional iron overload. Br. J. Haematol., 94, 288–99CrossRefGoogle ScholarPubMed
Pootrakul, P., Sinrankapracha, P., Sankote, J., Kachintorn, U.et al. (2003). Clinical trial of deferiprone iron chelation therapy in beta-thalassaemia/haemoglobin E patients in Thailand. Br. J. Haematol., 122, 305–10CrossRefGoogle Scholar
Hamblin, T. (1992). Immunologic abnormalities in myelodysplastic syndromes. Hematol. Oncol. Clin. North Am., 6, 571CrossRefGoogle ScholarPubMed
Bynoe, A. G., Scott, C., Ford, P.et al. (1983). Decreased T helper cells in the myelodysplastic syndromes. Br. J. Haematol. 54, 97CrossRefGoogle ScholarPubMed
Knox, S. J., Greenberg, P., Anderson, R. W.et al. (1983). Studies of T lymphocytes in preleukemic disorders and acute nonlymphocytic leukemia: in vitro radiosensitivity, mitogenic responsiveness, colony formation, and enumeration of lymphocytic subpopulations. Blood, 61, 449Google ScholarPubMed
Richert-Boe, K. E. and Bagby, G. J. (1992). In vitro hematopoiesis in myelodysplasia: liquid and soft-gel culture studies. Hematol. Oncol. Clin. North Am., 6, 543–56CrossRefGoogle ScholarPubMed
Janssen, J. W. G., Buschle, M., Layton, M.et al. (1989). Clonal analysis of myelodysplastic syndromes: evidence of multipotent stem cell origin. Blood, 73, 248Google ScholarPubMed
Abrahamson, G., Boultwood, J., Madden, J.et al. (1991). Clonality of cell populations in refractory anaemia using combined approach of gene loss and X linked restriction fragment length polymorphism methylation analysis. Br. J. Haematol., 79, 550CrossRefGoogle Scholar
Anastasi, J., Feng, J., Beau, M. M.et al. (1993). Cytogenetic clonality in myelodysplastic syndromes studied with fluorescence in situ hybridization: lineage, response to growth factor therapy and clonal expansion. Blood, 81, 1580Google Scholar
Tsukamot, N., Morita, K., Maehara, T.et al. (1993). Clonality in MDS: demonstration of pluripotent stem cell origin using X linked restriction fragment length polymorphisms. Br. J. Haematol., 83, 589CrossRefGoogle Scholar
Kamp, H., Fibbe, W., Jansen, R. P. M.et al. (1992). Clonal involvement of granulocytes and monocytes, but not of T and B lymphocytes and natural killer cells in patients with myelodysplasia: analysis by X linked restriction fragment length polymorphisms and polymerase chain reaction of the phosphoglycerate kinase gene. Blood, 80, 1774Google Scholar
Culligan, D. J., Cachai, P., Whittaker, J.et al. (1992). Clonal lymphocytes are detectable in only some cases of MDS. Br. J. Haematol., 81, 346CrossRefGoogle ScholarPubMed
Kroef, M. J. P. L., Fibbe, W., Mout, R.et al. (1993). Myeloid but not lymphoid cells carry the 5q deletion: polymerase chain reaction analysis of loss of heterozygosity using mini repeat sequences on highly purified cell fractions. Blood, 81, 1849Google Scholar
Greenberg, P. L. (1996). Biologic and clinical implications of marrow culture studies in the myelodysplastic syndromes. Semin. Hematol., 33, 163–75Google ScholarPubMed
Merchav, S., Nielson, O., Rosenbaum, H.et al. (1990). In vitro studies of erythropoietin-dependent regulation of erythropoiesis in myelodysplastic syndromes. Leukemia, 4, 771–4Google ScholarPubMed
Clark, D. M. and Lambert, I. (1990). Apoptosis is a common histopathological finding in myelodysplasia: the correlate of ineffective haematopoiesis. Leuk. Lymphoma, 2, 415CrossRefGoogle ScholarPubMed
Raza, A., Gezer, S., Mundle, S.et al. (1995). Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood, 86, 268Google ScholarPubMed
Raza, A., Mundle, S., Iftikhar, A.et al. (1995). Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am. J. Hematol., 48, 143CrossRefGoogle ScholarPubMed
Rajapaksa, R., Ginzton, N., Rott, L., and Greenberg, P. L. (1996). Altered oncogene expression and apoptosis in myelodysplastic syndrome marrow cells. Blood, 88, 4275–87Google ScholarPubMed
Greenberg, P. L. (1998). Apoptosis and its role in MDS: implications for disease natural history and treatment. Leukemia Res., 22, 1123–36CrossRefGoogle ScholarPubMed
Shimazaki, K., Ohshima, K., Suzumiya, J., Kawasaki, C., and Kikuchi, M. (2000). Evaluation of apoptosis as a prognostic factor in myelodysplastic syndromes. Br. J. Haematol., 110, 584–90CrossRefGoogle ScholarPubMed
Huh, Y. O., Jilani, I., Estey, E.et al. (2002). More cell death in refractory anemia with excess blasts in transformation than in acute myeloid leukemia. Leukemia, 16, 2249–52CrossRefGoogle ScholarPubMed
Ali, A., Mundle, S., Ragasa, D.et al. (1999). Sequential activation of caspase-1 and caspase-3-like proteases during apoptosis in myelodysplastic syndromes. J. Hematother. Stem Cell Res., 8, 343–56CrossRefGoogle ScholarPubMed
Hellstrom-Lindberg, E., Schmidt-Mende, J., Forsblom, A. M.et al. (2001). Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases. Br. J. Haematol., 112, 714–26CrossRefGoogle ScholarPubMed
Parker, J., Mufti, G., Rasool, F.et al. (2000). The role of apoptosis, proliferation and the Bcl2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood, 96, 3932–8Google Scholar
Korsmeyer, S. (1995). Regulators of cell death. Trends Genet., 11, 101CrossRefGoogle ScholarPubMed
Reed, J. C. (1997). Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin. Hematol., 34, 9Google ScholarPubMed
Davis, R. E. and Greenberg, P. (1998). Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: impact on disease progression. Leuk. Res., 22, 767–77CrossRefGoogle Scholar
Boudard, D., Vasselon, C., Bertheas, M. F.et al. (2002). Expression and prognostic significance of Bcl-2 family proteins in myelodysplastic syndromes. Am. J. Hematol., 70, 115–25CrossRefGoogle ScholarPubMed
Jacobs, R. A., Cornbleet, M., Vardiman, J.et al. (1986). Prognostic implications of morphology and karyotype in primary myelodysplastic syndromes. Blood, 67, 1765Google ScholarPubMed
Pedersen-Bjergaard, J., Philip, P., Larsen, S. O.et al. (1990). Chromosome aberrations and prognostic factors in therapy-related myelodysplasia and acute non-lymphocytic leukemia. Blood, 76, 1083Google Scholar
Horiike, S., Taniwaki, M., Misawa, S.et al. (1988). Chromosome abnormalities and karyotypic evolution in 83 patients with myelodysplastic syndrome and predictive value for prognosis. Cancer, 62, 11293.0.CO;2-C>CrossRefGoogle ScholarPubMed
Rossi, G., Pelizzari, A., Bellotti, D., Tonelli, M., and Barlati, S. (2000). Cytogenetic analogy between myelodysplastic syndrome and acute myeloid leukemia of elderly patients. Leukemia, 14, 636–41CrossRefGoogle ScholarPubMed
Carroll, M., Tomasson, M., Barker, G. F., Golub, T. R., and Gilliland, D. G. (1996). The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self-associates and activates PDGF beta R kinase-dependent signaling pathways. Proc. Natl Acad. Sci. U.S.A., 93, 14845–50CrossRefGoogle Scholar
Magnusson, M. K., Meade, K., Nakamura, R., Barrett, J., and Dunbar, C. E. (2002). Activity of STI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor beta receptor fusion oncogene. Blood, 100, 1088–91CrossRefGoogle ScholarPubMed
Yunis, J. J., Boot, A. J. M., Mayer, M. G., and Bos, J. L. (1989). Mechanisms of ras mutation in myelodysplastic syndrome. Oncogene, 4, 609Google ScholarPubMed
Padua, R. A., Gunn, B., Al-Sabah, A. I.et al. (1998). RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia, 12, 887–92CrossRefGoogle ScholarPubMed
Shih, L. Y., Huang, C., Wang, P. N.et al. (2004). Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia, 18, 466–75CrossRefGoogle ScholarPubMed
Paquette, R. L., Landow, E., Pierre, R. V.et al. (1993). N-ras mutations are associated with poor prognosis and increased risk of leukaemia in myelodysplastic syndrome. Blood, 82, 590–9Google ScholarPubMed
Parker, J. and Mufti, G. (1996). Ras and myelodysplasia: lessons from the last decade. Semin. Hematol., 33, 206Google ScholarPubMed
Neubauer, A., Greenberg, P., Negrin, R.et al. (1994). Mutations in the ras proto-oncogenes in patients with myelodysplastic syndromes. Leukemia, 8, 638Google ScholarPubMed
Zhang, J. and Lodish, H. (2004). Constitutive activation of the MEK/ERK pathway mediates all effects of oncogenic H-ras expression in primary erythroid progenitors. Blood, 104, 1679–87CrossRefGoogle ScholarPubMed
Greenberg, P., Cox, C., Beau, M. M.et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 89, 2079–88Google ScholarPubMed
Ridge, S. A., Worwood, M., Oscier, D.et al. (1990). FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc. Natl Acad. Sci. U.S.A., 87, 1377CrossRefGoogle ScholarPubMed
Tobal, K., Pagliuca, A., Bhatt, B.et al. (1990). Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia. Leukemia, 4, 486Google ScholarPubMed
Fidler, C., Watkins, F., Bowen, D. T.et al. (2004). NRAS, FLT3 and TP53 mutations in patients with myelodysplastic syndrome and a del(5q). Haematologica, 89, 865–6Google Scholar
Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science, 253, 49CrossRefGoogle ScholarPubMed
Jonveaux, P., Fenaux, P., Quiquandon, I.et al. (1991). Mutations in the p53 gene in myelodysplastic syndromes. Oncogene, 6, 2243Google ScholarPubMed
Wattel, E., Preudhomme, C., Hecquet, B.et al. (1994). P53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood, 84, 3148Google ScholarPubMed
Mori, N., Hidai, H., Yokota, J.et al. (1995). Mutations of the p53 gene in myelodysplastic syndrome and overt leukemia. Leuk. Res., 19, 869CrossRefGoogle ScholarPubMed
Sugimoto, K., Hirano, N., Toyoshima, H.et al. (1993). Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood, 81, 3022Google ScholarPubMed
Kaneko, H., Misawa, S., Horiike, S.et al. (1995). TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood, 85, 2189Google ScholarPubMed
Kita-Sasai, Y., Horiike, S., Misawa, S.et al. (2001). International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br. J. Haematol., 115, 301–12CrossRefGoogle ScholarPubMed
Horiike, S., Kita-Sasai, Y., Nakao, M., and Taniwaki, M. (2003). Configuration of the TP53 gene as an independent prognostic parameter of myelodysplastic syndrome. Leuk. Lymphoma, 44, 915–22CrossRefGoogle ScholarPubMed
Ben-Yehuda, D., Krichevsky, S., Caspi, O.et al. (1996). Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood, 88, 4296Google ScholarPubMed
Horiike, S., Misawa, S., Kaneko, H.et al. (1999). Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of nos 5 and/or 7 and its possible relationship to replication error phenotype. Leukemia, 13, 1235CrossRefGoogle ScholarPubMed
Side, L. E., Curtiss, N., Teel, K., Kratz, C.et al. (2004). RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer, 39, 217–22CrossRefGoogle ScholarPubMed
Cilloni, D., Gottardi, E., Messa, F., Fava, M.et al. (2003). Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J. Clin. Oncol., 21, 1988–95CrossRefGoogle ScholarPubMed
Nakao, M., Horiike, S., Fukushima-Nakase, Y., Nishimura, M.et al. (2004). Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br. J. Haematol., 125, 709–19CrossRefGoogle ScholarPubMed
Harada, H., Haroda, Y., Niimi, H.et al. (2004). High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood, 103, 2316–24CrossRefGoogle ScholarPubMed
Soderholm, J., Kobayashi, H., Mathieu, C., Rowley, J. D., and Nucifora, G. (1997). The leukemia-associated gene MDS1/EVI1 is a new type of GATA-binding transactivator. Leukemia, 11, 352–8CrossRefGoogle ScholarPubMed
Waalwijk, BarjestehDoorn-Khosrovani, S., Erpelinck, C., Lowenberg, B., and Delwel, R. (2003). Low expression of MDS1-EVI1-like-1 (MEL1) and EVI1-like-1 (EL1) genes in favorable-risk acute myeloid leukemia. Exp. Hematol., 31, 1066–72Google Scholar
Xu, K., Wang, L., Hao, Y.et al. (1999). Evi-1 and MDS1-Evi-1 genes in pathogenesis of myelodysplastic syndromes and post-MDS acute myeloid leukemia. Chin. Med. J. (Engl.), 112, 1112–18Google ScholarPubMed
Shih, L. Y., Lin, T., Wang, P. N.et al. (2004). Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome. Cancer, 101, 989–98CrossRefGoogle ScholarPubMed
Horiike, S., Yokota, S., Nakao, M., Iwai, T.et al. (1997). Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia, 11, 1442–6CrossRefGoogle ScholarPubMed
Gomes, I., Sharma, T., Edassery, S.et al. (2002). Novel transcription factors in human CD34 antigen-positive hematopoietic cells. Blood, 100, 107–19CrossRefGoogle ScholarPubMed
Nagamura-Inoue, T., Tamura, T. T., and Ozato, K. (2001). Transcription factors that regulate growth and differentiation of myeloid cells. Int. Rev. Immunol., 20, 83–105CrossRefGoogle ScholarPubMed
Yordy, J. S. and Muise-Helmericks, R. (2000). Signal transduction and the Ets family of transcription factors. Oncogene, 19, 6503–13CrossRefGoogle ScholarPubMed
Hsu, T., Trojanowska, M., and Watson, D. K. (2004). Ets proteins in biological control and cancer. J. Cell Biochem., 91, 896–903CrossRefGoogle ScholarPubMed
Kopp, J. L., Wilder, P., Desler, M.et al. (2004). Unique and selective effects of five Ets family members, Elf3, Ets1, Ets2, PEA3, and PU.1, on the promoter of the type II transforming growth factor-beta receptor gene. J. Biol. Chem., 279, 19407–20CrossRefGoogle ScholarPubMed
Kim, H. G., Guzman, C., Swindle, C. S.et al. (2004). The ETS-family transcription factor, PU.1, is necessary for the maintenance of fetal liver hematopoietic stem cells. [Epub ahead of print]. Blood, 104, 3894–900CrossRefGoogle Scholar
Kerckaert, J. P., Duterque-Coquillaud, M., Collyn-d'Hooghe, M.et al. (1990). Polymorphism of the proto-oncogene ETS-1 in hematological malignancies. Leukemia, 4, 16–19Google ScholarPubMed
Wlodarska, I., Mecucci, C., Marynen, P.et al. (1995). TEL gene is involved in myelodysplastic syndromes with either the typical t(5;12)(q33;p13) translocation or its variant t(10;12)(q24;p13). Blood, 85, 2848–52Google Scholar
Gilliland, D. G. (2002). Molecular genetics of human leukemias: new insights into therapy. Semin. Hematol., 39 (suppl. 3), 6–11CrossRefGoogle ScholarPubMed
Sternberg, D. W. and Gilliland, D. (2004). The role of signal transducer and activator of transcription factors in leukemogenesis. J. Clin. Oncol., 22, 361–71CrossRefGoogle ScholarPubMed
Hoefsloot, L. H., Amelsvoort, M., Broeders, L. C.et al. (1997). Erythropoietin-induced activation of STAT5 is impaired in the myelodysplastic syndrome. Blood, 89, 1690–700Google ScholarPubMed
Ohyashiki, J. H., Iwama, H., Yahata, N.et al. (1999). Telomere stability is frequently impaired in high-risk groups of patients with myelodysplastic syndromes. Clin. Cancer Res., 5, 1155–60Google ScholarPubMed
Sashida, G., Ohyashiki, J., Nakajima, A.et al. (2003). Telomere dynamics in myelodysplastic syndrome determined by telomere measurement of marrow metaphases. Clin. Cancer Res., 9, 1489–96Google ScholarPubMed
Ohshima, K., Karube, K., Shimazaki, K.et al. (2003). Imbalance between apoptosis and telomerase activity in myelodysplastic syndromes: possible role in ineffective hemopoiesis. Leuk. Lymphoma, 44, 1339–46CrossRefGoogle ScholarPubMed
Beausejour, C. M., Krtolica, A., Galimi, F.et al. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo. J., 22, 4212–22CrossRefGoogle ScholarPubMed
Esteller, M. (2003). Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin. Immunol., 109, 80–8CrossRefGoogle ScholarPubMed
Quesnel, B., Guillerm, G., Vereecque, R.et al. (1998). Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood, 91, 2985–90Google ScholarPubMed
Lubbert, M. (2003). Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: an early or later epigenetic alteration in myelodysplastic syndromes?Leukemia, 17, 1762–4CrossRefGoogle ScholarPubMed
Christiansen, D. H., Andersen, M., and Pedersen-Bjergaard, J. (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 17, 1813–19CrossRefGoogle ScholarPubMed
Claus, R. and Lubbert, M. (2003). Epigenetic targets in hematopoietic malignancies. Oncogene, 22, 6489–96CrossRefGoogle ScholarPubMed
Daskalakis, M., Nguyen, T., Nguyen, C.et al. (2002). Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine (decitabine) treatment. Blood, 100, 2957–64CrossRefGoogle ScholarPubMed
Lichtman, M. A. and Rowe, J. (2004). The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin. Oncol., 31, 185–97CrossRefGoogle ScholarPubMed
Krtolica, A. and Campisi, J. (2003). Integrating epithelial cancer, aging stroma and cellular senescence. Adv. Gerontol., 11, 109–16Google ScholarPubMed
Busuttil, R. A., Rubio, M., Campisi, J., and Vijga, J. (2004). Genomic instability, aging, and cellular senescence. Ann. N. Y. Acad. Sci., 1019, 245–55CrossRefGoogle ScholarPubMed
Campisi, J. (2003). Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. l. Exp. Gerontol., 38, 5–11CrossRefGoogle Scholar
Krtolica, A. and Campisi, J. (2002). Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int. J. Biochem. Cell Biol., 34, 1401–14CrossRefGoogle ScholarPubMed
Busuttil, R. A., Rubio, M., Dolle, M. E., Campisi, J., and Vijg, J. (2003). Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell, 2, 287–94CrossRefGoogle ScholarPubMed
Sutton, J. F., Stacey, M., Kearns, W. G.et al. (2004). Increased risk for aplastic anemia and myelodysplastic syndrome in individuals lacking glutathione S-transferase genes. Pediatr. Blood Cancer, 42, 122–6CrossRefGoogle ScholarPubMed
Allan, J. M., Wild, C., Rollinson, S.et al. (2001). Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc. Natl Acad. Sci. U.S.A., 98, 11592–7CrossRefGoogle ScholarPubMed
Morgan, G. J. and Smith, M. (2002). Metabolic enzyme polymorphisms and susceptibility to acute leukemia in adults. Am. J. Pharmacogenomics, 2, 79–92CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×