Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 8 - Schwann cells as a potential cell-based therapy for multiple sclerosis

from Section 1 - Basic mechanisms

References

1. SimonsM, TrotterJ.Wrapping it up: the cell biology of myelination. Curr Opin Neurobiol 2007;17(5):533–40
2. BirchmeierC, NaveK A.Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 2008;56(14):1491–7
3. MurphyP, TopilkoP, Schneider-MaunouryS, et al. The regulation of Krox-20 expression reveals important steps in the control of peripheral glial cell development. Development 1996;122(9):2847–57
4. Nait-OumesmarB, Picard-RieraN, KerninonC, Baron-Van EvercoorenA.The role of SVZ-derived neural precursors in demyelinating diseases: from animal models to multiple sclerosis. J Neurol Sci 2008;265(1–2):26–31
5. ZujovicV, BachelinC, Baron-Van EvercoorenA.Remyelination of the central nervous system: a valuable contribution from the periphery. Neuroscientist 2007;13(4):383–91
6. FeltsP A, SmithK J.Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res 1992;574(1–2):178–92
7. BlackJ A, WaxmanS G, SmithK J.Remyelination of dorsal column axons by endogenous Schwann cells restores the normal pattern of Nav1.6 and Kv1.2 at nodes of Ranvier. Brain 2006;129(5):1319–29
8. JasminL, JanniG, MoallemT M, LappiD A, OharaP T.Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. J Neurosci 2000;20(24):9215–23
9. BlakemoreW F. Remyelination of CNS axons by Schwann cells transplanted from the sciatic nerve. Nature 1977;266(5597):68–9
10. WoodP M.Separation of functional Schwann cells and neurons from normal peripheral nerve tissue. Brain Res 1976;115(3):361–75
11. BrockesJ P, FieldsK L, RaffM C.Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 1979;165(1):105–18
12. RutkowskiJ L, KirkC J, LernerM A, TennekoonG I.Purification and expansion of human Schwann cells in vitro. Nat Med 1995;1(1):80–3
13. LeviA D.Characterization of the technique involved in isolating Schwann cells from adult human peripheral nerve. J Neurosci Methods 1996;68(1):21–6
14. Avellana-AdalidV, BachelinC, LachapelleF, et al. In vitro and in vivo behaviour of NDF-expanded monkey Schwann cells. Eur J Neurosci 1998;10(1):291–300
15. BachelinC, LachapelleF, GirardC, et al. Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 2005;128(3):540–9
16. DunningM D, KettunenM I, Ffrench ConstantC, FranklinR J, BrindleK M.Magnetic resonance imaging of functional Schwann cell transplants labelled with magnetic microspheres. Neuroimage 2006;31(1):172–80
17. Baron Van-EvecoorenA, BlakemoreW F.Schwann cell development. In: LazzariniR A, ed. Myelin biology and disorders. Amsterdam: Elsevier, 2004:143–72
18. DuncanI D, AguayoA J, BungeR P, WoodP M.Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 1981;49(2):241–52
19. HonmouO, FeltsP A, WaxmanS G, KocsisJ D.Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 1996;16(10):3199–208
20. GirardC, BemelmansA P, DufourN, et al. Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. J Neurosci 2005;25(35):7924–33
21. IwashitaY, BlakemoreW F.Areas of demyelination do not attract significant numbers of Schwann cells transplanted into normal white matter. Glia 2000;31(3):232–40
22. BrierleyC M, CrangA J, IwashitaY, et al. Remyelination of demyelinated CNS axons by transplanted human Schwann cells: the deleterious effect of contaminating fibroblasts. Cell Transplant 2001;10(3):305–15
23. LankfordK L, ImaizumiT, HonmouO, KocsisJ D.A quantitative morphometric analysis of rat spinal cord remyelination following transplantation of allogenic Schwann cells. J Comp Neurol 2002;443(3):259–74
24. OudegaM, XuX M.Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 2006;23(3–4):453–67
25. BrookG A, LawrenceJ M, RaismanG.Morphology and migration of cultured Schwann cells transplanted into the fimbria and hippocampus in adult rats. Glia 1993;9(4):292–304
26. TaveggiaC, ZanazziG, PetrylakA, et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 2005;47(5):681–94
27. FranklinR J, CrangA J, BlakemoreW F.The reconstruction of an astrocytic environment in glia-deficient areas of white matter. J Neurocytol 1993;22(5):382–96
28. LakatosA, BarnettS C, FranklinR J.Olfactory ensheathing cells induce less host astrocyte response and chondroitin sulphate proteoglycan expression than Schwann cells following transplantation into adult CNS white matter. Exp Neurol 2003;184(1):237–46
29. BlakemoreW F, CrangA J, CurtisR.The interaction of Schwann cells with CNS axons in regions containing normal astrocytes. Acta Neuropathol 1986;71(3–4):295–300
30. FranklinR J, CrangA J, BlakemoreW F.Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord. J Neurocytol 1991;20(5):420–30
31. Baron-Van EvercoorenA, GansmullerA, DuhamelE, PascalF, GumpelM.Repair of a myelin lesion by Schwann cells transplanted in the adult mouse spinal cord. J Neuroimmunol 1992;40(2–3):235–42
32. LangfordL A, OwensG C.Resolution of the pathway taken by implanted Schwann cells to a spinal cord lesion by prior infection with a retrovirus encoding beta-galactosidase. Acta Neuropathol 1990;80(5):514–20
33. IwashitaY, FawcettJ W, CrangA J, FranklinR J, BlakemoreW F.Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival. Exp Neurol 2000;164(2):292–302
34. KromerL F, CornbrooksC J.Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci USA 1985;82(18):6330–4
35. MartinD, SchoenenJ, DelreeP, LeprinceP, RogisterB, MoonenG.Grafts of syngenic cultured, adult dorsal root ganglion-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies. Neurosci Lett 1991;124(1):44–8
36. Montero-MeneiC N, Pouplard-BarthelaixA, GumpelM, Baron-Van EvercoorenA.Pure Schwann cell suspension grafts promote regeneration of the lesioned septo-hippocampal cholinergic pathway. Brain Res 1992;570(1–2):198–208
37. LeviA D, BungeR P.Studies of myelin formation after transplantation of human Schwann cells into the severe combined immunodeficient mouse. Exp Neurol 1994;130(1):41–52
38. McTigueD M, HornerP J, StokesB T, GageF H.Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 1998;18(14):5354–65
39. YamauchiJ, MiyamotoY, TanoueA, ShooterE M, ChanJ R.Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci USA 2005;102(41):14 889–94
40. RutishauserU.Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 2008;9(1):26–35
41. LavdasA A, FranceschiniI, Dubois-DalcqM, MatsasR.Schwann cells genetically engineered to express PSA show enhanced migratory potential without impairment of their myelinating ability in vitro. Glia 2006;53(8):868–78
42. PapastefanakiF, ChenJ, LavdasA A, et al. Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 2007;130(8):2159–74
43. BachelinC, ZujovicV, BuchetD, MallerJ, Baron-Van EvercoorenA.Ectopic expression of PSA-NCAM in adult macaque Schwann cells promotes their migration and remyelination potential in the CNSBrain 2010;133(2):406–20
44. GrimpeB, SilverJ.A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 2004;24(6):1393–7
45. Santos-SilvaA, FairlessR, FrameM C, et al. FGF/heparin differentially regulates Schwann cell and olfactory ensheathing cell interactions with astrocytes: a role in astrocytosis. J Neurosci 2007;27(27):7154–67
46. FairlessR, FrameM C, BarnettS C.N-cadherin differentially determines Schwann cell and olfactory ensheathing cell adhesion and migration responses upon contact with astrocytes. Mol Cell Neurosci 2005;28(2):253–63
47. WoodhooA, SahniV, GilsonJ, et al. Schwann cell precursors: a favourable cell for myelin repair in the central nervous system. Brain 2007;130(8):2175–85
48. Hjerling-LefflerJ, MarmigereF, HeglindM, et al. The boundary cap: a source of neural crest stem cells that generate multiple sensory neuron subtypes. Development 2005;132(11):2623–32
49. MaroG S, VermerenM, VoiculescuO, et al. Neural crest boundary cap cells constitute a source of neuronal and glial cells of the PNS. Nat Neurosci 2004;7(9):930–8
50. AquinoJ B, Hjerling-LefflerJ, KoltzenburgM, et al. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol 2006;198(2):438–49
51. MorrisonS J, WhiteP M, ZockC, AndersonD J.Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 1999;96(5):737–49
52. KrugerG M, MosherJ T, BixbyS, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 2002;35(4):657–69
53. FernandesK J, McKenzieI A, MillP, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 2004;6(11):1082–93
54. Sieber-BlumM, GrimM, HuY F, SzederV.Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn 2004;231(2):258–69
55. TomitaY, MatsumuraK, WakamatsuY, et al. Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart. J Cell Biol 2005;170(7):1135–46
56. HagedornL, SuterU, SommerL.P0 and PMP22 mark a multipotent neural crest-derived cell type that displays community effects in response to TGF-beta family factors. Development 1999;126(17):3781–94
57. LiH Y, SayE H, ZhouX F.Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells 2007;25(8):2053–65
58. DezawaM, TakahashiI, EsakiM, TakanoM, SawadaH.Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 2001;14(11):1771–6
59. KeilhoffG, StangF, GoihlA, WolfG, FansaH.Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol 2006;26(7–8):1235–52
60. KramperaM, MarconiS, PasiniA, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 2007;40(2):382–90
61. NagoshiN, ShibataS, KubotaY, et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2008;2(4):392–403
62. McKenzieI A, BiernaskieJ, TomaJ G, MidhaR, MillerF D.Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 2006;26(24):6651–60
63. AmohY, LiL, CampilloR, et al. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci USA 2005;102(49):17 734–8
64. Sieber-BlumM, SchnellL, GrimM, et al. Characterization of epidermal neural crest stem cell (EPI-NCSC) grafts in the lesioned spinal cord. Mol Cell Neurosci 2006;32(1–2):67–81
65. TomaJ G, McKenzieI A, BagliD, MillerF D.Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 2005;23(6):727–37
66. HuntD P, MorrisP N, SterlingJ, et al. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin. Stem Cells 2008;26(1):163–72
67. XuY, LiuZ, LiuL, et al. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci 2008;9:21
68. BonillaS, AlarconP, VillaverdeR, et al. Haematopoietic progenitor cells from adult bone marrow differentiate into cells that express oligodendroglial antigens in the neonatal mouse brain. Eur J Neurosci 2002;15(3):575–82
69. SasakiM, HonmouO, AkiyamaY, et al. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 2001;35(1):26–34
70. AkiyamaY, RadtkeC, KocsisJ D.Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 2002;22(15):6623–30
71. AkiyamaY, RadtkeC, HonmouO, KocsisJ D.Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 2002;39(3):229–36
72. DupinE, CalloniG, RealC, Goncalves-TrentinA, Le DouarinN M.Neural crest progenitors and stem cells. C R Biol 2007;330(6–7):521–9
73. DupinE, RealC, Glavieux-PardanaudC, VaigotP, Le DouarinN M.Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial–melanocytic precursors in vitro. Proc Natl Acad Sci USA 2003;100(9):5229–33
74. RealC, Glavieux-PardanaudC, Le DouarinN M, DupinE.Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev Biol 2006;300(2):656–69
75. RealC, Glavieux-PardanaudC, VaigotP, Le-DouarinN, DupinE.The instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts. Int J Dev Biol 2005;49(2–3):151–9
76. RohJ, ChoE A, SeongI, et al. Down-regulation of Sox10 with specific small interfering RNA promotes transdifferentiation of Schwannoma cells into myofibroblasts. Differentiation 2006;74(9–10):542–51
77. MujtabaT, Mayer-ProschelM, RaoM S.A common neural progenitor for the CNS and PNS. Dev Biol 1998;200(1):1–15
78. KeirsteadH S, Ben-HurT, RogisterB, et al. Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci 1999;19(17):7529–36
79. CrangA J, GilsonJ M, LiW W, BlakemoreW F.The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci 2004;20(6):1445–60
80. AkiyamaY, HonmouO, KatoT, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 2001;167(1):27–39
81. SailerM H, HazelT G, PanchisionD M, et al. BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci 2005;118(24):5849–60
82. TalbottJ F, CaoQ, EnzmannG U, et al. Schwann cell-like differentiation by adult oligodendrocyte precursor cells following engraftment into the demyelinated spinal cord is BMP-dependent. Glia 2006;54(3):147–59
83. MotheA J, TatorC H.Transplanted neural stem/progenitor cells generate myelinating oligodendrocytes and Schwann cells in spinal cord demyelination and dysmyelination. Exp Neurol 2008;213(1):176–90