Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 15 - How to measure the effects of rehabilitation

from Section 3 - Rehabilitation: general aspects


1. KesselringJ, BeerS. Symptomatic therapy and neurorehabilitation in multiple sclerosis. Lancet Neurol 2005;4:643–52
2. ThompsonA J (ed). Neurological Rehabilitation of Multiple Sclerosis. London: Taylor & Francis, 2006
3. WardC D, PhillipsM, SmithA, et al. Multidisciplinary approaches in progressive neurological disease: can we do better?J Neurol Neurosurg Psychiatry 2003;74(Suppl 4):8–12
4. ThompsonA J. Neurorehabilitation in multiple sclerosis: foundations, facts and fiction. Curr Opin Neurol 2005;18:267–71
5. Turner-StokesL, WilliamsH, AbrahamR, et al. Clinical standards for inpatient specialist rehabilitation services in the UK. Clin Rehab 2000;14:468–80
6. ThompsonA J. Neurological rehabilitation. In: FowlerT J, ScaddingJ W, eds. Clinical neurology. London: Arnold, 2003:551–6
7. World Health Organization. International classification of functioning, disability and health (ICIDH2).
8. LockeE A, LathamG P.Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. Am Psychol 2002;57:705–17
9. HollidayR C, AntounM, PlayfordE D. A survey of goal-setting methods used in rehabilitation. Neurorehab Neural Repair 2005; 19:227–31
10. HollidayR C, BallingerC, PlayfordE D. Goal setting in neurological rehabilitation: patient's perspective. Disabil Rehabil 2007;29:389–94
11. HollidayR C, CanoS J, FreemanJ A, PlayfordE D. Should patients participate in clinical decision making? An optimized balance block design controlled study of goal setting in a rehabilitation unit. J Neurol Neurosurg Psychiatry 2007;78:576–80
12. LevackW M M, TaylorK, SiegertR J, et al. Is goal-planning in rehabilitation effective? A systematic review. Clin Rehab 2006;20:739–55
13. EdwardsS G M, PlayfordE D, HobartJ C, et al. Comparison of physician outcome measures and patients' perception of benefits of inpatient neurorehabilitation. BMJ 2002;324:1493
14. MelvilleL, NelsonD. The Melville–Nelson occupational therapy evaluation system for skilled nursing facilities and sub-acute rehabilitation, 2001.
15. KirusekT J, SmithA, CardilloJ E.Goal attainment scaling: applications theory and measurement. Hillsdale, NJ: Lawrence Erlbaum, 1994
16. BaptisteS, LawM, PollockN, et al. Canadian Occupational Performance Measure (COPM). World Fed Occup Ther Bull 1993;28:47–51
17. BaronK B, CurtinC. A manual for use with the self assessment of occupational functioning. Chicago, IL: University of Illinois, 1990
18. YerxaE, BaumS. Engagement in daily occupations and life satisfaction among young people with spinal cord injuries. Occup Ther J Res 1986;6:272–83
19. EmmersonG J, NeelyM A. Two adaptable, valid, and reliable data-collection measures: goal attainment scaling and the semantic differential. Counsel Psychologist 1988;16:261–71
20. KielhofnerG.Model of human occupation: theory and application. 2nd ed. Philadelphia, PA: Lippincott Williams Wilkins, 1995
21. HurnJ, KneeboneI, CropleyM. Goal setting as an outcome measure: a systematic review. Clin Rehab 2006;20:756–72
22. RossiterD A, EdmondsonA, Al-ShahiR, et al. Integrated care pathways in multiple sclerosis rehabilitation: completing the audit cycle. Mult Scler 1998;4:85–9
23. ThompsonA J. The effectiveness of neurological rehabilitation in multiple sclerosis. J Rehab Res Develop 2000;37:455–61
24. HobartJ C, LampingD L, ThompsonA J. Evaluating neurological outcome measures: the bare essentials. J Neurol Neurosurg Psychiatry 1996;60:127–30
25. HobartJ C, FreemanJ A, ThompsonA J. Kurtzke scales revisited: the application of psychometric methods to clinical intuition. Brain 2000;123:1027–40
26. MahoneyF l, BarthelD W. Functional evaluation: the Barthel Index (BI). Maryland State Med J 1965;14:61–5
27. GrangerC V, CotterA C, HamiltonB B, et al. Functional assessment scales: a study of persons with multiple sclerosis. Arch Phys Med Rehab 1990;71:870–5
28. HobartJ, LampingD, FreemanJ, et al. Measuring neurology: is bigger better? Comparative measurement properties of the functional independence measure (FIM) and Barthel index. Neurology 1997;48:A235
29. HarwoodR H, RogersA, DickinsonE, et al. Measuring handicap: London Handicap Scale – a new outcome measure for chronic disease. Qual Health Care 1994;3:11–16
30. WareJ E, SherbourneC D.The MOS 36-item short form health survey (SF-36). 1. Conceptual framework and item selection. Med Care 1992;30:473–83
31. HuntS M, McKennaS P, McEwenJ, WilliamsJ, PappE. The Nottingham Health Profile: subjective health status and medical consultations. Soc Sci Med 1981;15:221–9
32. BergnerM, BobbittR A, CarterW B, et al. The Sickness Impact Profile: development and final revision of a health status measure. Med Care 1981;19:787–805
33. GoldbergD, HillierV F. A scaled version of the general health questionnaire. Psychol Medi 1979;9:139–45
34. FiskJ D, PontefractA, RitvoP G, et al. The impact of fatigue on patients with multiple sclerosis. Canad J Neurol Sci 1994;21:9–14
35. KruppL B, LaRoccaN C, Muir-NashJ, et al. The fatigue severity scale applied to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989;46:1121–3
36. AshworthB. Preliminary trial of carisoprodal in multiple sclerosis. Practitioner 1964;192:540–2
37. KurtzkeJ F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52
39. SharrackB, HughesR A C. The Guy’s Neurological Disability Scale (GNDS): a new disability measure for multiple sclerosis. Multiple Sclerosis 1999; 5:223–233
40. RavnborgM, Gronbech-JensenM, JonssonA. The MS impairment scale: a pragmatic approach to the assessment of impairment in patients with multiple sclerosis. Mult Scler 1997;3:31–42
41. StewartG, KiddD, ThompsonA J. The assessment of handicap: an evaluation of the Environmental Status Scale. Disabil Rehab 1995;17:312–16
42. HobartJ C, LampingD L, FitzpatrickR, RiaziA, ThompsonA J. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain 2001;124:962–73
43. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. Measuring the impact of MS on walking ability: the 12-item MS walking scale (MSWS-12). Neurology 2003;60; 31–6
44. VickreyB G, HaysR D, HarooniR, et al. A health-related quality of life measure for multiple sclerosis. Qual Life Res 1995;4:187–206
45. KruppL B, CoyleP K, DoscherC, et al. Fatigue therapy in multiple sclerosis: results of a double-blind randomized parallel trial of amantadine, pemoline, and placebo. Neurology 1995;45:1956–61
46. HobartJ C, RiaziA, ThompsonA J, et al. Getting the measure of spasticity in MS: the MS Spasticity Scale (MSSS-89). Brain 2006;129:224–34
47. PolmanC H, ThompsonA J, MurrayT J, et al. (eds). Multiple sclerosis: the guide to treatment and management. 6th ed. New York, Demos Medical Publishing Multiple Sclerosis International Foundation: 2006
48.Expanded Disability Status Scale (EDSS). Available online at
49. CellaD F, DineenK, ArnasonB, et al. Validation of the functional assessment of multiple sclerosis quality of life instrument. Neurology 1996;47:129–39
50. FordH L, GerryE, TennantA, et al. Developing a disease specific quality of life measure for people with multiple sclerosis. Clin Rehab 2001;15:247–58
51. RiaziA, HobartJ C, LampingD L, FitzpatrickR, ThompsonA J. Multiple sclerosis impact scale (MSIS-29): reliability and validity in hospital-based samples. J Neurol Neurosurg Psychiatry 2002;73:701–4
52. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based outcome measure. Health Technol Assess 2004;8(9):1–60
53. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. How responsive is the Multiple Sclerosis Impact Scale (MSIS-29)? A comparison with other self-report scales. J Neurol Neurosurg Psychiatry 2005;76:1539–43
54. FischerJ S, LaRoccaN G, MillerD M, et al. Recent developments in the assessment of quality of life in multiple sclerosis (MS). Mult Scler 1999;5:251–9
55. McGuiganC, HutchinsonM. The Multiple Sclerosis Impact Scale (MSIS-29) is a reliable and sensitive measure. J Neurol Neurosurg Psychiatry 2004;75:266–9
56. HoogervorstJ N P, JellesB, PolmanC H, et al. Multiple Sclerosis Impact Scale (MSIS-29): relation to established measures of impairment and disability. Mult Scler 2004;10:569–74
57. CostelloeL, O'RourkeK, KearneyH, et al. Does the patient know best? Significant change in the multiple sclerosis impact scale (MSIS-29 physical) over four years. Mult Scler 2006;12:S86, P328 (ECTRIMS 2006 abstract)
58. Van der LindenF A H, KragtJ J, KleinM, et al. Psychometric evaluation of the multiple sclerosis impact scale (MSIS-29) for proxy use. J Neurol Neurosurg Psychiatry 2005;76:1677–81
59. Van der LindenF A H, KragtJ J, HobartJ C, et al. Longitudinal proxy measurements in multiple sclerosis: agreements between patients and their partners on the impact of MS on daily life over a period of two years. Mult Scler 2006;12:S86, P330 (ECTRIMS 2006 abstract)
60. WadeD T. Measurement in Neurological Rehabilitation. Oxford: Oxford University Press, 1992
61. McHorneyC A, WareJ E J, LuJ F R, SherbourneC D.The MOS 36-Item Short-Form Health Survey (SF-36). III. Tests of data quality, scaling assumptions and reliability across diverse patient groups. Med Care 1994;32:40–66
62. WareJ E J, HarrisW J, GandekB, RogersB W, ReeseP R. MAP-R for windows: multitrait/multi-item analysis program – revised user's guide. Boston, MA: Health Assessment Laboratory, 1997
63. LohrK N, AaronsonN K, AlonsoJ, et al. Evaluating quality of life and health status instruments: development of scientific review criteria. Clin Ther 1996;18:979–92
64. McHorneyC A, TarlovA R. Individual-patient monitoring in clinical practice: are available health status surveys adequate?Qual Life Res 1995;4:293–307
65. FitzpatrickR, DaveyC, BuxtonM J, JonesD R. Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess 1998;2(14).
66. HaysR D, AndersonR, RevickiD A. Psychometric considerations in evaluating health-related quality of life measures. Qual Life Res 1993;2:441–9
67. CronbachL J. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16:297–334
68. DeyoR A, DiehrP, PatrickD L. Reproducibility and responsiveness of health status measures: statistics and strategies for evaluation. Control Clin Trials 1991;12:142s–158s
69. NunnallyJ C, BernsteinI H. Psychometric theory. 3rd ed. New York: McGraw-Hill, 1994
70. CronbachL J. Validity on parole: how can we go straight?New Direct Testing Meas 1980;5:99–108
71. KaplanR M, BushJ W, BarryC C. Health status: types of validity and the index of well-being. Health Serv Res 1976;11(Winter):478–507
72. CampbellD T, FiskeD W. Convergent and discriminant validation by the multitrait–multimethod matrix. Psychol Bull 1959;56:81–105
73. HustedJ, CookR, FarewellV, GladmanD.Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol 2000;53:459–68
74. KazisL E, AndersonJ J, MeenanR F. Effect sizes for interpreting changes in health status. Med Care 1989;27(3 suppl):S178–S189
75. GuyattG H, WalterS, NormanG. Measuring change over time: assessing the usefulness of evaluative instruments. J Chron Dis 1987;40:171–8
76. Food and Drug Administration. Patient reported outcome measures: use in medical product development to support labeling claims, 2006.
77. European Medicines Agency. Reflection paper on the regulatory guidance for the use of the health-related quality of life (HRQL) measures in the evaluation of medicinal products. London: European Medicines Agency, 2006
78. RevickiD. FDA draft guidance and health-outcomes research. Lancet 2007;369:540–2
79. WareJ E J, SnowK K, KosinskiM, GandekB.SF-36 Health Survey manual and interpretation guide. Boston, MA: Nimrod Press, 1993
80. HobartJ C, FreemanJ A, LampingD L, FitzpatrickR, ThompsonA J. The SF-36 in multiple sclerosis (MS): why basic assumptions must be tested. J Neurol Neurosurg Psychiatry 2001;71:363–70
81. HobartJ C, WilliamsL, MoranK, ThompsonA J. Quality of life measurement after stroke: uses and abuses of the SF-36. Stroke 2002;33:1348–56
82. JenkinsonC, HobartJ C, ChandolaT, et al. Use of the short form health survey (SF-36) in patients with amyotrophic lateral sclerosis: tests of data quality, score reliability, response rate and scaling assumptions. J Neurol 2002;249:178–83
83. CanoS, ThompsonA, FitzpatrickR, et al. Evidence-based guidelines for using the Short Form 36 in cervical dystonia. Mov Disord 2006;22:122–7
84. HagellP, TörnqvistA, HobartJ.Testing the SF-36 in Parkinson's disease: implications for reporting rating scale data. J Neurol Neurosurg Psychiatry 2008;255:246–54
85. RaschG. Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Education Research, 1960
86. LordF M, NovickM R.Statistical theories of mental test scores. Reading, MA: Addison-Wesley, 1968
87. WrightB D, StoneM H.Best test design: Rasch measurement. Chicago: MESA, 1979
88. WrightB D, LinacreJ M. Observations are always ordinal: measurements, however, must be interval. Arch Phys Med Rehab 1989;70:857–60
89. WainerH, DoransN J, FlaugherR, et al. (eds). Computerized adaptive testing: a primer. Hillsdale, NJ: Lawrence Erlbaum, 1990
90. RevickiD, CellaD. Health status assessment for the twenty-first century: item response theory, item banking and computer adaptive testing. Qual Life Res 1997;6:595–600
91. LinacreJ. Computer-adaptive testing: a methodology whose time has come. In: ChaeS, KangU, JeonE, LinacreJ, eds. Development of computerized middle school achievement tests. Seoul: Komesa Press, 2000:1–58