Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 15 - How to measure the effects of rehabilitation

from Section 3 - Rehabilitation: general aspects

References

1. KesselringJ, BeerS. Symptomatic therapy and neurorehabilitation in multiple sclerosis. Lancet Neurol 2005;4:643–52
2. ThompsonA J (ed). Neurological Rehabilitation of Multiple Sclerosis. London: Taylor & Francis, 2006
3. WardC D, PhillipsM, SmithA, et al. Multidisciplinary approaches in progressive neurological disease: can we do better?J Neurol Neurosurg Psychiatry 2003;74(Suppl 4):8–12
4. ThompsonA J. Neurorehabilitation in multiple sclerosis: foundations, facts and fiction. Curr Opin Neurol 2005;18:267–71
5. Turner-StokesL, WilliamsH, AbrahamR, et al. Clinical standards for inpatient specialist rehabilitation services in the UK. Clin Rehab 2000;14:468–80
6. ThompsonA J. Neurological rehabilitation. In: FowlerT J, ScaddingJ W, eds. Clinical neurology. London: Arnold, 2003:551–6
7. World Health Organization. International classification of functioning, disability and health (ICIDH2). http://www3.who.int/icf/icftemplate.cfm
8. LockeE A, LathamG P.Building a practically useful theory of goal setting and task motivation: a 35-year odyssey. Am Psychol 2002;57:705–17
9. HollidayR C, AntounM, PlayfordE D. A survey of goal-setting methods used in rehabilitation. Neurorehab Neural Repair 2005; 19:227–31
10. HollidayR C, BallingerC, PlayfordE D. Goal setting in neurological rehabilitation: patient's perspective. Disabil Rehabil 2007;29:389–94
11. HollidayR C, CanoS J, FreemanJ A, PlayfordE D. Should patients participate in clinical decision making? An optimized balance block design controlled study of goal setting in a rehabilitation unit. J Neurol Neurosurg Psychiatry 2007;78:576–80
12. LevackW M M, TaylorK, SiegertR J, et al. Is goal-planning in rehabilitation effective? A systematic review. Clin Rehab 2006;20:739–55
13. EdwardsS G M, PlayfordE D, HobartJ C, et al. Comparison of physician outcome measures and patients' perception of benefits of inpatient neurorehabilitation. BMJ 2002;324:1493
14. MelvilleL, NelsonD. The Melville–Nelson occupational therapy evaluation system for skilled nursing facilities and sub-acute rehabilitation, 2001. www.mco.edu/allh/OT/melville-nelson.html
15. KirusekT J, SmithA, CardilloJ E.Goal attainment scaling: applications theory and measurement. Hillsdale, NJ: Lawrence Erlbaum, 1994
16. BaptisteS, LawM, PollockN, et al. Canadian Occupational Performance Measure (COPM). World Fed Occup Ther Bull 1993;28:47–51
17. BaronK B, CurtinC. A manual for use with the self assessment of occupational functioning. Chicago, IL: University of Illinois, 1990
18. YerxaE, BaumS. Engagement in daily occupations and life satisfaction among young people with spinal cord injuries. Occup Ther J Res 1986;6:272–83
19. EmmersonG J, NeelyM A. Two adaptable, valid, and reliable data-collection measures: goal attainment scaling and the semantic differential. Counsel Psychologist 1988;16:261–71
20. KielhofnerG.Model of human occupation: theory and application. 2nd ed. Philadelphia, PA: Lippincott Williams Wilkins, 1995
21. HurnJ, KneeboneI, CropleyM. Goal setting as an outcome measure: a systematic review. Clin Rehab 2006;20:756–72
22. RossiterD A, EdmondsonA, Al-ShahiR, et al. Integrated care pathways in multiple sclerosis rehabilitation: completing the audit cycle. Mult Scler 1998;4:85–9
23. ThompsonA J. The effectiveness of neurological rehabilitation in multiple sclerosis. J Rehab Res Develop 2000;37:455–61
24. HobartJ C, LampingD L, ThompsonA J. Evaluating neurological outcome measures: the bare essentials. J Neurol Neurosurg Psychiatry 1996;60:127–30
25. HobartJ C, FreemanJ A, ThompsonA J. Kurtzke scales revisited: the application of psychometric methods to clinical intuition. Brain 2000;123:1027–40
26. MahoneyF l, BarthelD W. Functional evaluation: the Barthel Index (BI). Maryland State Med J 1965;14:61–5
27. GrangerC V, CotterA C, HamiltonB B, et al. Functional assessment scales: a study of persons with multiple sclerosis. Arch Phys Med Rehab 1990;71:870–5
28. HobartJ, LampingD, FreemanJ, et al. Measuring neurology: is bigger better? Comparative measurement properties of the functional independence measure (FIM) and Barthel index. Neurology 1997;48:A235
29. HarwoodR H, RogersA, DickinsonE, et al. Measuring handicap: London Handicap Scale – a new outcome measure for chronic disease. Qual Health Care 1994;3:11–16
30. WareJ E, SherbourneC D.The MOS 36-item short form health survey (SF-36). 1. Conceptual framework and item selection. Med Care 1992;30:473–83
31. HuntS M, McKennaS P, McEwenJ, WilliamsJ, PappE. The Nottingham Health Profile: subjective health status and medical consultations. Soc Sci Med 1981;15:221–9
32. BergnerM, BobbittR A, CarterW B, et al. The Sickness Impact Profile: development and final revision of a health status measure. Med Care 1981;19:787–805
33. GoldbergD, HillierV F. A scaled version of the general health questionnaire. Psychol Medi 1979;9:139–45
34. FiskJ D, PontefractA, RitvoP G, et al. The impact of fatigue on patients with multiple sclerosis. Canad J Neurol Sci 1994;21:9–14
35. KruppL B, LaRoccaN C, Muir-NashJ, et al. The fatigue severity scale applied to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989;46:1121–3
36. AshworthB. Preliminary trial of carisoprodal in multiple sclerosis. Practitioner 1964;192:540–2
37. KurtzkeJ F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444–52
39. SharrackB, HughesR A C. The Guy’s Neurological Disability Scale (GNDS): a new disability measure for multiple sclerosis. Multiple Sclerosis 1999; 5:223–233
40. RavnborgM, Gronbech-JensenM, JonssonA. The MS impairment scale: a pragmatic approach to the assessment of impairment in patients with multiple sclerosis. Mult Scler 1997;3:31–42
41. StewartG, KiddD, ThompsonA J. The assessment of handicap: an evaluation of the Environmental Status Scale. Disabil Rehab 1995;17:312–16
42. HobartJ C, LampingD L, FitzpatrickR, RiaziA, ThompsonA J. The Multiple Sclerosis Impact Scale (MSIS-29): a new patient-based outcome measure. Brain 2001;124:962–73
43. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. Measuring the impact of MS on walking ability: the 12-item MS walking scale (MSWS-12). Neurology 2003;60; 31–6
44. VickreyB G, HaysR D, HarooniR, et al. A health-related quality of life measure for multiple sclerosis. Qual Life Res 1995;4:187–206
45. KruppL B, CoyleP K, DoscherC, et al. Fatigue therapy in multiple sclerosis: results of a double-blind randomized parallel trial of amantadine, pemoline, and placebo. Neurology 1995;45:1956–61
46. HobartJ C, RiaziA, ThompsonA J, et al. Getting the measure of spasticity in MS: the MS Spasticity Scale (MSSS-89). Brain 2006;129:224–34
47. PolmanC H, ThompsonA J, MurrayT J, et al. (eds). Multiple sclerosis: the guide to treatment and management. 6th ed. New York, Demos Medical Publishing Multiple Sclerosis International Foundation: 2006
48.Expanded Disability Status Scale (EDSS). Available online at www.mstrust.org.uk
49. CellaD F, DineenK, ArnasonB, et al. Validation of the functional assessment of multiple sclerosis quality of life instrument. Neurology 1996;47:129–39
50. FordH L, GerryE, TennantA, et al. Developing a disease specific quality of life measure for people with multiple sclerosis. Clin Rehab 2001;15:247–58
51. RiaziA, HobartJ C, LampingD L, FitzpatrickR, ThompsonA J. Multiple sclerosis impact scale (MSIS-29): reliability and validity in hospital-based samples. J Neurol Neurosurg Psychiatry 2002;73:701–4
52. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. Improving the evaluation of therapeutic interventions in multiple sclerosis: development of a patient-based outcome measure. Health Technol Assess 2004;8(9):1–60
53. HobartJ C, RiaziA, LampingD L, FitzpatrickR, ThompsonA J. How responsive is the Multiple Sclerosis Impact Scale (MSIS-29)? A comparison with other self-report scales. J Neurol Neurosurg Psychiatry 2005;76:1539–43
54. FischerJ S, LaRoccaN G, MillerD M, et al. Recent developments in the assessment of quality of life in multiple sclerosis (MS). Mult Scler 1999;5:251–9
55. McGuiganC, HutchinsonM. The Multiple Sclerosis Impact Scale (MSIS-29) is a reliable and sensitive measure. J Neurol Neurosurg Psychiatry 2004;75:266–9
56. HoogervorstJ N P, JellesB, PolmanC H, et al. Multiple Sclerosis Impact Scale (MSIS-29): relation to established measures of impairment and disability. Mult Scler 2004;10:569–74
57. CostelloeL, O'RourkeK, KearneyH, et al. Does the patient know best? Significant change in the multiple sclerosis impact scale (MSIS-29 physical) over four years. Mult Scler 2006;12:S86, P328 (ECTRIMS 2006 abstract)
58. Van der LindenF A H, KragtJ J, KleinM, et al. Psychometric evaluation of the multiple sclerosis impact scale (MSIS-29) for proxy use. J Neurol Neurosurg Psychiatry 2005;76:1677–81
59. Van der LindenF A H, KragtJ J, HobartJ C, et al. Longitudinal proxy measurements in multiple sclerosis: agreements between patients and their partners on the impact of MS on daily life over a period of two years. Mult Scler 2006;12:S86, P330 (ECTRIMS 2006 abstract)
60. WadeD T. Measurement in Neurological Rehabilitation. Oxford: Oxford University Press, 1992
61. McHorneyC A, WareJ E J, LuJ F R, SherbourneC D.The MOS 36-Item Short-Form Health Survey (SF-36). III. Tests of data quality, scaling assumptions and reliability across diverse patient groups. Med Care 1994;32:40–66
62. WareJ E J, HarrisW J, GandekB, RogersB W, ReeseP R. MAP-R for windows: multitrait/multi-item analysis program – revised user's guide. Boston, MA: Health Assessment Laboratory, 1997
63. LohrK N, AaronsonN K, AlonsoJ, et al. Evaluating quality of life and health status instruments: development of scientific review criteria. Clin Ther 1996;18:979–92
64. McHorneyC A, TarlovA R. Individual-patient monitoring in clinical practice: are available health status surveys adequate?Qual Life Res 1995;4:293–307
65. FitzpatrickR, DaveyC, BuxtonM J, JonesD R. Evaluating patient-based outcome measures for use in clinical trials. Health Technol Assess 1998;2(14). www.ncchta.org/project/934.asp
66. HaysR D, AndersonR, RevickiD A. Psychometric considerations in evaluating health-related quality of life measures. Qual Life Res 1993;2:441–9
67. CronbachL J. Coefficient alpha and the internal structure of tests. Psychometrika 1951;16:297–334
68. DeyoR A, DiehrP, PatrickD L. Reproducibility and responsiveness of health status measures: statistics and strategies for evaluation. Control Clin Trials 1991;12:142s–158s
69. NunnallyJ C, BernsteinI H. Psychometric theory. 3rd ed. New York: McGraw-Hill, 1994
70. CronbachL J. Validity on parole: how can we go straight?New Direct Testing Meas 1980;5:99–108
71. KaplanR M, BushJ W, BarryC C. Health status: types of validity and the index of well-being. Health Serv Res 1976;11(Winter):478–507
72. CampbellD T, FiskeD W. Convergent and discriminant validation by the multitrait–multimethod matrix. Psychol Bull 1959;56:81–105
73. HustedJ, CookR, FarewellV, GladmanD.Methods for assessing responsiveness: a critical review and recommendations. J Clin Epidemiol 2000;53:459–68
74. KazisL E, AndersonJ J, MeenanR F. Effect sizes for interpreting changes in health status. Med Care 1989;27(3 suppl):S178–S189
75. GuyattG H, WalterS, NormanG. Measuring change over time: assessing the usefulness of evaluative instruments. J Chron Dis 1987;40:171–8
76. Food and Drug Administration. Patient reported outcome measures: use in medical product development to support labeling claims, 2006. www.fda.gov/cber/gdlns/prolbl.pdf
77. European Medicines Agency. Reflection paper on the regulatory guidance for the use of the health-related quality of life (HRQL) measures in the evaluation of medicinal products. London: European Medicines Agency, 2006
78. RevickiD. FDA draft guidance and health-outcomes research. Lancet 2007;369:540–2
79. WareJ E J, SnowK K, KosinskiM, GandekB.SF-36 Health Survey manual and interpretation guide. Boston, MA: Nimrod Press, 1993
80. HobartJ C, FreemanJ A, LampingD L, FitzpatrickR, ThompsonA J. The SF-36 in multiple sclerosis (MS): why basic assumptions must be tested. J Neurol Neurosurg Psychiatry 2001;71:363–70
81. HobartJ C, WilliamsL, MoranK, ThompsonA J. Quality of life measurement after stroke: uses and abuses of the SF-36. Stroke 2002;33:1348–56
82. JenkinsonC, HobartJ C, ChandolaT, et al. Use of the short form health survey (SF-36) in patients with amyotrophic lateral sclerosis: tests of data quality, score reliability, response rate and scaling assumptions. J Neurol 2002;249:178–83
83. CanoS, ThompsonA, FitzpatrickR, et al. Evidence-based guidelines for using the Short Form 36 in cervical dystonia. Mov Disord 2006;22:122–7
84. HagellP, TörnqvistA, HobartJ.Testing the SF-36 in Parkinson's disease: implications for reporting rating scale data. J Neurol Neurosurg Psychiatry 2008;255:246–54
85. RaschG. Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Education Research, 1960
86. LordF M, NovickM R.Statistical theories of mental test scores. Reading, MA: Addison-Wesley, 1968
87. WrightB D, StoneM H.Best test design: Rasch measurement. Chicago: MESA, 1979
88. WrightB D, LinacreJ M. Observations are always ordinal: measurements, however, must be interval. Arch Phys Med Rehab 1989;70:857–60
89. WainerH, DoransN J, FlaugherR, et al. (eds). Computerized adaptive testing: a primer. Hillsdale, NJ: Lawrence Erlbaum, 1990
90. RevickiD, CellaD. Health status assessment for the twenty-first century: item response theory, item banking and computer adaptive testing. Qual Life Res 1997;6:595–600
91. LinacreJ. Computer-adaptive testing: a methodology whose time has come. In: ChaeS, KangU, JeonE, LinacreJ, eds. Development of computerized middle school achievement tests. Seoul: Komesa Press, 2000:1–58