Skip to main content Accessibility help
  • Print publication year: 2018
  • Online publication date: February 2018

6 - Acute Lymphoid Leukaemias (ALL) and Minimal Residual Disease in ALL

1.Conter, V., Aricò, M., Basso, G., et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia, 24 (2010), 255–64.
2.Möricke, A., Zimmermann, M., Reiter, A., et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia, 24 (2010), 265–84.
3.Pui, C-H., Carroll, W.L., Meshinchi, S., et al. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol, 29 (2011), 551–65.
4.Pui, C-H., Pei, D., Campana, D., et al. A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia, 28 (2014), 2336–43.
5.Mullighan, C.G.. Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol, 50 (2013), 314–24.
6.Chiaretti, S., Gianfelici, V., Ceglie, G., et al. Genomic characterization of acute leukemias. Med Princ Pract, 23 (2014), 487506.
7.Bennett, J.M., Catovsky, D., Daniel, M.T., et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol, 33 (1976), 451–8.
8.Swerdlow, S.H., Campo, E., Harris, N.L., et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (IARC, WHO PRESS, 4th Edition, 2008).
9.Gaipa, G., Basso, G., Biondi, A., et al. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom, 84 (2013), 359–69.
10.Craig, F.E. and Foon, K.A.. Flow cytometric immunophenotyping for hematologic neoplasms. Blood, 111 (2008), 3941–67.
11.Bene, M.C., Castoldi, G., Knapp, W., et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia, 9 (1995), 1783–6.
12.Schultz, K.R., Bowman, W.P., Aledo, A., et al. Improved early event-free survival with imatinib in Philadelphia chromosome–positive acute lymphoblastic leukemia: A Children's Oncology Group Study. J Clin Oncol, 27 (2009), 5175–81.
13.Mullighan, C.G.. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematology Am Soc Hematol Educ Program 2014 (2014), 174–80.
14.Basso, G., Buldini, B., De Zen, L., et al. New methodologic approaches for immunophenotyping acute leukemias. Haematologica, 86 (2001), 675–92.
15.Borowitz, M.J., Guenther, K.L., Shults, K.E., et al. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol, 100 (1993), 534–40.
16.Wood, B.L.. Flow cytometry in the diagnosis and monitoring of acute leukemia in children. J Hematopathol, 8 (2015):191–9.
17.Wood, B.L., Arroz, M., Barnett, D., et al. Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom, 72 Suppl 1 (2007), S1422.
18.Dworzak, M.N., Buldini, B., Gaipa, G., et al. AIEOP-BFM Consensus guidelines 2014 for flow cytometric immunophenotyping of pediatric acute lymphoblastic leukemia: standard development and validation of interpretation. Cytometry B Clin Cytom, (2017) February 10. doi: 10.1002/cyto.b.21518. [Epub ahead of print].
19.Al-Seraihy, A.S., Owaidah, T.M., Ayas, M., et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica, 94 (2009), 1682–90.
20.Gerr, H., Zimmermann, M., Schrappe, M., et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol, 149 (2010), 8492.
21.Coustan-Smith, E., Mullighan, C.G., Onciu, M., et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol, 10 (2009), 147–56.
22.Inukai, T., Kiyokawa, N., Campana, D., et al. Clinical significance of early T-cell precursor acute lymphoblastic leukaemia: results of the Tokyo Children's Cancer Study Group Study L99-15. Br J Haematol, 156 (2012), 358–65.
23.Conter, V., Valsecchi, M.G., Buldini, B. et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis. Lancet Haematol, 3 (2016), e806.
24.Patrick, K., Wade, R., Goulden, N., et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol, 166 (2014), 421–4.
25.Wood, B., Winter, S.S., Dunsmore, K.P., et al. T-lymphoblastic leukemia (T-ALL) shows excellent outcome, lack of significance of the early thymic precursor (ETP) immunophenotype and validation of the prognostic value of end-induction minimal residual disease (MRD) in Children's Oncology Group (COG) study AALL0434. Blood, 124 (2014), 1 ASH Abstract.
26.Jain, N., Lamb, A.V., O'Brien, S. et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL) in adolescents and adults: a high-risk subtype. Blood, 127 (2016), 1863–9.
27.Hrusak, O., Basso, G., Ratei, R., et al. Flow diagnostics essential code: a simple and brief format for the summary of leukemia phenotyping. Cytometry B Clin Cytom, 86 (2014), 288–91.
28.Chiaretti, S., Vitale, A., Cazzaniga, G., et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica, 98 (2013), 1702–10.
29.Hrusák, O. and Porwit-MacDonald, A.. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia, 16 (2002), 1233–58.
30.Basso, G., Case, C. and Dell'Orto, M.C.. Diagnosis and genetic subtypes of leukemia combining gene expression and flow cytometry. Blood Cells Mol Dis, 39 (2007), 164–8.
31.Bernt, K.M. and Hunger, S.P.. Current concepts in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Oncol, 4 (2014), 54.
32.Aricò, M., Schrappe, M., Hunger, S.P., et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome–positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol, 28 (2010), 4755–61.
33.Tabernero, M.D., Bortoluci, A.M., Alaejos, I., et al. Adult precursor B-ALL with BCRABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34 CD13 and CD38 expression. Leukemia, 15 (2001), 406–14.
34.Kiyokawa, N., Iijima, K., Tomita, O., et al. Significance of CD66c expression in childhood acute lymphoblastic leukemia. Leuk Res, 38 (2014), 42–8.
35.Primo, D., Tabernero, M.D., Perez, J.J., et al. Genetic heterogeneity of BCR/ABL1 adult B-cell precursor acute lymphoblastic leukemia: impact on the clinical, biological and immunophenotypical disease characteristics. Leukemia, 19 (2005), 713–20.
36.Buldini, B., Zangrando, A., Michielotto, B., et al. Identification of immunophenotypic signatures by clustering analysis in pediatric patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol, 85 (2010), 138–41.
37.Muntean, A.G. and Hess, J.L.. The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol, 7 (2012), 283301.
38.Slany, R.K.. The molecular biology of mixed lineage leukemia. Haematologica, 94 (2009), 984–93.
39.De Zen, L., Bicciato, S., te Kronnie, G., et al. Computational analysis of flow-cytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. Leukemia, 17 (2003), 1557–65.
40.Zangrando, A., Intini, F. F, G. te Kronnie, et al. Validation of NG2 antigen in identifying BP-ALL patients with MLL rearrangements using qualitative and quantitative flow cytometry: a prospective study. Leukemia, 22 (2008), 858–61.
41.Attarbaschi, A., Mann, G., König, M., et al. Mixed lineage leukemia-rearranged childhood pro-B and CD10-negative pre-B acute lymphoblastic leukemia constitute a distinct clinical entity. Clin Cancer Res, 12 (2006), 2988–94.
42.Pui, C-H., Robison, L.L. and Look, A.T.. Acute lymphoblastic leukaemia. Lancet, 371 (2008), 1030–43.
43.Fuka, G., Kauer, M., Kofler, R., et al. The leukemia-specific fusion gene ETV6/RUNX1 perturbs distinct key biological functions primarily by gene repression. PLoS One, 6 (2011), e26348.
44.Linka, Y., Ginzel, S., Krüger, M., et al. The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods. Blood Cancer J, 3 (2013), e151.
45.Morrow, M., Horton, S., Kioussis, D., et al. TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood, 103 (2004), 3890–6.
46.Hrusák, O., Trka, J., Zuna, J., et al. Aberrant expression of KOR-SA3544 antigen in childhood acute lymphoblastic leukemia predicts TEL-AML1 negativity. The Pediatric Hematology Working Group in the Czech Republic. Leukemia, 12 (1998), 1064–70.
47.De Zen, L., Orfao, A., Cazzaniga, G., et al. Quantitative multiparametric immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML1 ALLs identification. Leukemia, 14 (2000), 1225–31.
48.Russell, L.J., Capasso, M., Vater, I., et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood, 114 (2009), 2688–98.
49.Mullighan, C.G., Collins-Underwood, JR., Phillips, L.A., et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet, 41 (2009), 1243–6.
50.Chapiro, E., Russell, L., Lainey, E., et al. Activating mutation in the TSLPR gene in B-cell precursor lymphoblastic leukemia. Leukemia, 24 (2010), 642–5.
51.Tasian, S.K., Doral, M.Y., Borowitz, M.J., et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood, 120 (2012), 833–42.
52.Bercovich, D., Ganmore, I., Scott, L.M., et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet, 372 (2008), 1484–92.
53.Mullighan, C.G., Zhang, J., Harvey, R.C., et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. PNAS, 106 (2009), 9414–18.
54.Kearney, L., Gonzalez De Castro, D., Yeung, J., et al. A specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukaemia. Blood, 113 (2008), 646–8.
55.Bugarin, C., Sarno, J., Palmi, C. et al. Fine tuning of surface CRLF2 expression and its associated signaling profile in childhood B-cell precursor acute lymphoblastic leukemia. Haematologica, 100 (2015), e22932.
56.Palmi, C., Vendramini, E., Silvestri, D., et al. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia, 26 (2012), 2245–53.
57.Palmi, C., Savino, A.M., Silvestri, D. et al. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia. Oncotarget, 7 (2016) 59260–72.
58.Germano, G., Pigazzi, M., Del Giudice, L., et al. Two consecutive immunophenotypic switches in a child with MLL-rearranged acute lymphoblastic leukemia. Haematologica, 91 (2006), 2931.
59.Slamova, L., Starkova, J., Fronkova, E., et al. CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia, 28 (2014), 609–20.
60.Coustan-Smith, E., Sancho, J., Behm, F.G., et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 100 (2002), 52–8.
61.Conter, V., Bartram, C.R., Valsecchi, M.G., et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood, 115 (2010), 3206–14.
62.Bruggemann, M., Schrauder, A., Raff, T., et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia, 24 (2010), 521–35.
63.Dworzak, M.N., Gaipa, G., Ratei, R., et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: multicentric assessment is feasible. Cytometry Part B, 74B (2008), 331–40.
64.van Dongen, J.J., Lhermitte, L., Bottcher, S., et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia, 26 (2012), 1908–75.
65.Lucio, P., Parreira, A., van den Beemd, M.W., et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia, 13 (1999), 419–27.
66.Veltroni, M., De Zen, L., Sanzari, M.C., et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica, 88 (2003), 1245–52.
67.Chen, J.S., Coustan-Smith, E., Suzuki, T., et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood, 97 (2001), 2115–20.
68.Coustan-Smith, E., Song, G., Clark, C., et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood, 117 (2011), 6267–76.
69.Sutton, R., Venn, N.C., Tolisano, J., et al. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Br J Haematol, 146 (2009), 292–9.
70.Ratei, R., Basso, G., Dworzak, M., et al. Monitoring treatment response of childhood precursor B-cell acute lymphoblastic leukemia in the AIEOP-BFM-ALL 2000 protocol with multiparameter flow cytometry: predictive impact of early blast reduction on the remission status after induction. Leukemia, 23 (2009), 528–34.
71.Basso, G., Veltroni, M., Valsecchi, M.G., et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol, 27 (2009), 5168–74.
72.Eckert, C., von Stackelberg, A., Seeger, K., et al. Minimal residual disease after induction is the strongest predictor of prognosis in intermediate risk relapsed acute lymphoblastic leukaemia - long-term results of trial ALL-REZ BFM P95/96. Eur J Cancer, 49 (2013), 1346–55.
73.Volejnikova, J., Mejstrikova, E., Dörge, P., et al. Ikaros (IKZF1) alterations and minimal residual disease at day 15 assessed by flow cytometry predict prognosis of childhood BCR/ABL-negative acute lymphoblastic leukemia. Pediatr Blood Cancer, 60 (2013), 420–7.
74.Eveillard, M., Robillard, N., Arnoux, I., et al. Major impact of an early bone marrow checkpoint (day 21) for minimal residual disease in flow cytometry in childhood acute lymphoblastic leukemia. Hematol Oncol, 35 (2017):237–43.
75.Gaipa, G., Cazzaniga, G., Valsecchi, M.G., et al. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica, 97 (2012), 1582–93.
76.Paganin, M., Fabbri, G., Conter, V., et al. Postinduction minimal residual disease monitoring by polymerase chain reaction in children with acute lymphoblastic leukemia. J Clin Oncol, 32 (2014), 3553–8.
77.Stary, J., Zimmermann, M., Campbell, M., et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol, 32 (2014), 174–84.
78.Nachman, J.B., Heerema, N.A., Sather, H., et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood, 110 (2007), 1112–5.
79.Charrin, C., Thomas, X., French, M., et al. A report from the LALA-94 and LALA-SA groups on hypodiploidy with 30 to 39 chromosomes and near-triploidy: 2 possible expressions of a sole entity conferring poor prognosis in adult acute lymphoblastic leukemia (ALL). Blood, 104 (2004), 2444–51.
80.Shaffer, L.G., McGowan-Jordan, J. and Schmid, M.. ISCN 2013 – An International System for Human Cytogenetic Nomenclature (Karger, Basel, 2013).
81.Look, A.T., Roberson, P.K., Williams, D.L., et al. Prognostic importance of blast cell DNA content in childhood acute lymphoblastic leukemia. Blood, 65 (1985), 1079–86.
82.Pui, C-H., Dodge, R.K., Look, A.T., et al. Risk of adverse events in children completing treatment for acute lymphoblastic leukemia: St. Jude Total Therapy studies VIII, IX, and X. J Clin Oncol, 9 (1991), 1341–7.
83.Aricò, M., Valsecchi, M.G., Rizzari, C., et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J Clin Oncol, 26 (2008), 283–9.
84.Trueworthy, R., Shuster, J., Look, T., et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol, 10 (1992), 606–13.
85.Chilton, L., Hills, R.K., Harrison, C.J., et al. Hyperdiploidy with 49-65 chromosomes represents a heterogeneous cytogenetic subgroup of acute myeloid leukemia with differential outcome. Leukemia, 28 (2014), 321–8.
86.Holmfeldt, L., Wei, L., Diaz-Flores, E., et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet, 45 (2013), 242–52.
87.Ito, C., Kumagai, M., Manabe, A., et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood, 93 (1999), 315–20.
88.Rachieru-Sourisseau, P., Baranger, L., Dastugue, N. et al. DNA Index in childhood acute lymphoblastic leukaemia: a karyotypic method to validate the flow cytometric measurement. Int J Lab Hematol, 32 (2010), 288–98.