Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-29T16:38:00.164Z Has data issue: false hasContentIssue false

15 - Predicting Performance in Large-Scale Identification Systems by Score Resampling

from PART V - PERFORMANCE OF MULTIBIOMETRIC SYSTEMS

Published online by Cambridge University Press:  25 October 2011

Sergey Tulyakov
Affiliation:
Center for Unified Biometrics and Sensors
Venu Govindaraju
Affiliation:
Center for Unified Biometrics and Sensors
Bir Bhanu
Affiliation:
University of California, Riverside
Venu Govindaraju
Affiliation:
State University of New York, Buffalo
Get access

Summary

Introduction

With the wider deployment of biometric authentication systems and the increased number of enrolled persons in such systems, the problem of correctly predicting the performance has become important. The number of available testing samples is usually smaller than the number of enrolled persons that the biometric system is expected to handle. The accurate performance prediction allows system integrators to optimally select the biometric matchers for the system, as well as to properly set the decision thresholds.

Research in predicting the performance in large-scale biometric systems is still limited and mostly theoretical. Wayman (1999) introduced multiple operating scenarios for biometric systems and derived the equations for predicted performance assuming that the densities of genuine and impostor scores are known. Jarosz et al. (2005) presented an overview of possible performance estimation methods including extrapolation of large-scale performance given the performance on smaller-scale databases, binomial approximation of performance, and the application of extreme value theory. Bolle et al. (2005) derived the performance of identification systems (CMC curve) assuming that the performance of the corresponding biometric verification system (ROC curve) is known. The major assumption used in all these works is that the biometric match scores are independent and identically distributed, that is, genuine scores are randomly drawn from a genuine score distribution, and impostor scores are randomly and independently drawn from an impostor score distribution. As we will show in this chapter, this assumption does not generally hold, and using it leads to the underestimation of identification performance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×