Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-13T07:56:04.591Z Has data issue: false hasContentIssue false

10 - MOS systems with silicon dioxide dielectrics

from Part III - Real MOS systems

Published online by Cambridge University Press:  05 October 2014

Olof Engström
Affiliation:
Chalmers University of Technology, Gothenberg
Get access

Summary

Engineering efforts at the dawn of MOS technology

In the exploratory phase of MOS technology, a major task was to find a material combination with an insulator/semiconductor interface free of charge. The fortunate coincidence that one of the most abundant elements on earth turned out to be an excellent semiconductor, and that its natural oxide offered an interface of high quality, gave the SiO2/Si structure a pivotal role in the development of electronics during the first 50 years of MOS progress (see Deal, 1974, and references therein). Especially in its role as a gate insulator of MOSFETs, thermally prepared SiO2 was developed to an extremely high electrical quality. The necessary change into a gate insulator with higher dielectric constant, k, to be described in Chapter 11, has not diminished the importance of this material for transistor gate functions. A thin interlayer of around 1 nm of SiO2 or an SiOx sub-oxide most often appears between the high-k material and the silicon interface. This has motivated an ongoing need to understand the physical and chemical properties of silicon dioxide, its sub-oxides, and the oxidation processes occurring at silicon surfaces.

The engineering efforts accomplished in the 1960s quickly found the bearings towards oxides with low enough concentrations of bulk charge and interface states for transistor production. The most widely used electrical methods, CV (Grove et al., 1964, 1965) and the conductance method (Nicollian and Goetzberger, 1967), described in Chapters 2 and 6, for characterizing interface states and oxide charge, were developed in this empirical period. Also, a comprehensive amount of experimental efforts to find applicable oxidation techniques were undertaken and the most important correlations between oxide quality and process data were found and understood (Deal, 1974). Likewise, a useful phenomenological model for the oxidation process was established (Deal et al., 1965) and the sources of charge creation were identified as the four different classes described in Chapter 2. A more distinct understanding based on first-principle results became possible only later, however, after increased computing power and improved microscopy became available.

Type
Chapter
Information
The MOS System , pp. 231 - 260
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, M. O. and Engström, O. (1989). Atomic relaxation of Si-SiO2 interface states measured by a photo-depopulation technique. Appl. Surf. Sci. 39, 289.CrossRefGoogle Scholar
Beck, R. B. and Majkusiak, B. (1989). The initial growth rate of thermal silicon oxide. Phys. Stat. Sol. A 116, 313.CrossRefGoogle Scholar
Bersch, E., Di, M., Consiglio, S., Clark, R. D. and Leusink, G. J. (2010). Complete band offset characterization of the HfO2/SiO2/Si stack using charge corrected x-ray photoelectron spectroscopy. J. Appl. Phys. 107, 043702.CrossRefGoogle Scholar
Brower, K. L. (1988). Kinetics of H2 passivation of P centers at the (111) Si-SiO2 interface. Phys. Rev. B 38, 9657.CrossRefGoogle Scholar
Brower, K. L. (1989). Electron paramagnetic resonance studies of Si-SiO2 interface defects. Semicond. Sci. Technol. 4, 970.CrossRefGoogle Scholar
Brower, K. L. and Myers, S. M. (1990). Chemical kinetics of hydrogen and (111) Si-SiO2 interface defects. Appl. Phys. Lett. 57, 162.CrossRefGoogle Scholar
Brunström, C. and Svensson, C. (1981). ESR studies of thermally oxidized silicon wafers. Soli State Comm. 37, 399.CrossRefGoogle Scholar
Buchanan, D. A. and DiMaria, D. J. (1990). Interface and bulk trap generation in metal-oxide-semiconductor capacitors. J. Appl. Phys. 67, 7439.CrossRefGoogle Scholar
Buchanan, D. A., Marwick, A. D., DiMaria, D. J. and Dori, L. (1994). Hot-electron-induced hydrogen redistribution and defect generation in metal-oxide-semiconductor capacitors. J. Appl. Phys. 76, 3596.CrossRefGoogle Scholar
Caplan, P. J., Poindexter, E. H., Deal, B. E. and Razouk, R. R. (1979). ESR centers, interface states, oxide fixed charge in thermally oxidized silicon wafers. J. Appl. Phys. 50, 5847.CrossRefGoogle Scholar
Cartier, E., Stathis, J. H. and Buchanan, D. A. (1993). Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl. Phys. Lett. 63, 1510.CrossRefGoogle Scholar
Deal, B. E. (1974). The current understanding of charges in the thermally oxidized silicon structure. J. Electrochem. Soc. 121, 198C.CrossRefGoogle Scholar
Deal, B. E. and Grove, A. S. (1965). General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770.CrossRefGoogle Scholar
Deuling, H., Klausman, E. and Goetzberger, A. (1972). Interface states in Si-SiO2 interfaces. Solid-State Electron. 15, 559.CrossRefGoogle Scholar
DiMaria, D. J., Buchanan, D. A., Stathis, J. H. and Stahlbush, R. E. (1995). Interface states induced by the presence of trapped holes near the silicon-silicon-dioxide interface. J. Appl. Phys. 77, 2032.CrossRefGoogle Scholar
DiMaria, D. J., Weinberg, Z. A. and Aitken, J. M. (1977). Location of positive charges in SiO2 films on Si generated by vuv photons, x ray and high field stressing. J. Appl. Phys. 48, 898.CrossRefGoogle Scholar
Do Thanh, L., Aslam, M. and Balk, P. (1986). Defect structure and generation of interface states in MOS structures. Solid-State Electron. 29, 829.CrossRefGoogle Scholar
Dreiner, S., Schürmann, M. and Westphal, C. (2004). Structural analysis of the SiO2/Si(100) interface by means of photoelectron diffraction. Phys. Rev. Lett. 93, 126101.CrossRefGoogle Scholar
Engström, O. (2013). Compensation effects at electron traps in semiconductors. Monathshefte für Chemie (Chemical Monthly) 144, 73.CrossRefGoogle Scholar
Engström, O., Gutt, T. and Przewlocki, H. M. (2007). Energy concepts involved in MOS characterization. J. Telecomm. Inf. Technol. 2, 86.Google Scholar
Engström, O., Mitrovic, I. Z. and Hall, S. (2012). Influence of interlayer properties on the characteristics of high-k gate stacks. Solid-State Electron. 75, 63.CrossRefGoogle Scholar
Enta, Y., Mun, B. S., Rossi, M. et al. (2008). Real-time observation of dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy.
Fahrner, W. and Goetzberger, A. (1970). Energy dependence of electrical properties of interface states in Si SiO2 interfaces. Appl. Phys. Lett. 17, 16.CrossRefGoogle Scholar
Fishbein, B. J., Watt, J. T and Plummer, J. D. (1987) Time resolved annealing of interface traps in poly-silicon gate metal-oxide silicon capacitors. J. Electrochem. Soc. 134, 674.CrossRefGoogle Scholar
Gerardi, G. J. H., Caplan, P. J. and Johnson, N. M. (1986). Interface traps and P centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348.CrossRefGoogle Scholar
Gerardi, G. J., Poindexter, E. H. and Caplan, P. J. (1983). Interface traps and Pb centers in oxidized (100) silicon wafers. Appl. Phys. Lett. 49, 348.CrossRefGoogle Scholar
Giustino, F. and Pasquarello, A. (2005). Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104.CrossRefGoogle Scholar
Giustino, F., Bongiorno, A. and Pasquarello, A. (2005). Equivalent oxide thickness of a thin oxide interlayer in gate insulator stacks on silicon. Appl. Phys. Lett. 86, 192901.CrossRefGoogle Scholar
Grimmeiss, H. G., Buchwald, W. R., Poindexter, E. H. et al. (1988). Optical and electrical studies of interface traps in the Si/SiO2 system by modified junction space-charge techniques. Phys. Rev B 39, 5175.CrossRefGoogle Scholar
Grove, A. S., Snow, E. H., Deal, B. E. and Sah, C. T. (1964). Simple physical model for the space charge capacitance of metal-oxide-semiconductor structures. J. Appl. Phys. 35, 2458.CrossRefGoogle Scholar
Grove, A. S., Snow, E. H., Deal, B. E. and Sah, C. T. (1965). Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures. Solid-State Electron. 8, 145.CrossRefGoogle Scholar
Grunthaner, P. J., Hecht, M. H., Grunthaner, F. J. and Johnson, N. M. (1987). The localization and crystallographic dependence of Si suboxide species at the SiO2/Si interface. J. Appl. Phys. 61, 629.CrossRefGoogle Scholar
Hamann, D. R. (2000). Energetics of silicon suboxides. Phys. Rev. B 61, 9899.CrossRefGoogle Scholar
Helms, C. R. and Poindexter, E. H. (1994). The silicon-silicon-dioxide system: its microstructure and imperfections. Rep. Prog. Phys. 57, 791.CrossRefGoogle Scholar
Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A., Yarmoff, J. A. and Hollinger, G. (1988). Microscopic structure of the SiO2/Si interface. Phys. Rev. B 38, 6084.CrossRefGoogle ScholarPubMed
Hu, G. and Johnson, W. C. (1980). Relationship between trapped holes and interface states in MOS capacitors. Appl. Phys. Lett. 36, 590.CrossRefGoogle Scholar
Hu, G. and Johnson, W. C. (1983). Relationship between x-ray produced holes and interface states in metal-oxide-semiconductor capacitors. J. Appl. Phys. 54, 1441.CrossRefGoogle Scholar
Jivanescu, M., Stesmans, A. and Afanas’ev, V. V. (2011). Multifrequency ESR analysis of the E′ defect in a SiO2. Phys. Rev. B, 83, 094118.CrossRefGoogle Scholar
Kimerling, L. C. (1978). Recombination enhanced defect creation. Solid-State Electron. 21, 1391.CrossRefGoogle Scholar
Lai, S. K. (1983). Interface trap generation in silicon dioxide when electrons are captured by trapped holes. J. Appl. Phys. 54, 2540.CrossRefGoogle Scholar
Lenahan, P. M. and Dressendorfer, P. V. (1983). An electron spin resonance study of radiation-induced electrically active paramagnetic centers at the Si/SiO2 interface. J. Appl. Phys. 53, 1457.CrossRefGoogle Scholar
Lenahan, P. M. and Dressendorfer, P. V. (1984a). Hole traps and trivalent silicon centers in metal/oxide/silicon devices. J. Appl. Phys. 55, 3495.CrossRefGoogle Scholar
Lenahan, P. M. and Dressendorfer, P. V. (1984b). Paramagnetic trivalent silicon centers in gamma irradiated metal-oxide-silicon structures. Appl. Phys. Lett. 44, 96.CrossRefGoogle Scholar
Markov, S. (2009). Gate leakage variability in nano-CMOS transistors. Thesis, Faculty of Engineering, University of Glasgow, 2009.
Markov, S., Sushko, P. V., Roy, S. et al. (2008). Si-SiO2 interface band-gap transition effects on MOS inversion layers. Phys. Stat. Sol. A 205, 1290.CrossRefGoogle Scholar
Massoud, H. Z., Plummer, J. D. and Irene, E. A. (1985). Thermal oxidation of silicon in dry oxygen: Growth rate enhancement in the thin regime. II Physical mechanisms. J. Electrochem Soc. 132, 2693.CrossRefGoogle Scholar
McLean, F. B. (1980). A framework for understanding radiation-induced interface states in SiO2 MOS structures. IEEE Trans. Nucl. Sci. 27, 1651.CrossRefGoogle Scholar
Nishi, Y. (1971). Study of silicon-silicon dioxide structure by electron spin resonance I. Jpn. J. Appl. Phys. 10, 52.CrossRefGoogle Scholar
Nishi, Y., Tanaka, K. and Ohwada, A. (1972). Study of silicon-silicon dioxide structure by electron spin resonance II. Jpn. J. Appl. Phys. 11, 85.CrossRefGoogle Scholar
Ng, K.-O. and Vanderbilt, D. (1999). Structure and oxidation kinetics of the Si(100)-SiO2 interface. Phys. Rev. B 59, 10132.CrossRefGoogle Scholar
Nicollian, E. H. and Goetzberger, A. (1967). The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055.CrossRefGoogle Scholar
Pang, S., Lyon, S. A. and Johnson, W. C. (1982). Interface state generation in the SiSiO2 system by photoinjecting electrons from an Al field plate. Appl. Phys. Lett. 40, 709.CrossRefGoogle Scholar
Pantelides, S. T., Lu, Z.-Y., Nicklaw, C. et al. (2008). The E’ center and oxygen vacancies in SiO2. J. Non-Cryst. Solids 354, 217.CrossRefGoogle Scholar
Pantelides, S. T., Rashkeev, S. N., Buczko, R., Fleetwood, D. M., Schrimpf, R. D. (2000). Reactions of hydrogen with Si-SiO2 interfaces. IEEE Trans. Nucl. Sci. 47, 2262.CrossRefGoogle Scholar
Poindexter, E. H. (1989). MOS interface states: overview and physicochemical perspective. Semicond. Sci. Technol. 4, 961.CrossRefGoogle Scholar
Poindexter, E. H., Gerardi, G. J., Rueckel, M. E., Caplan, P. J., Johnson, N. M. and Biegelsen, D. K. (1984). Electronic traps and P centers at the Si/SiO2 interface: Band-gap energy distribution. J. Appl. Phys. 56, 2844.CrossRefGoogle Scholar
Ragnarsson, L.-Å. and Lundgren, P. (2000). Electrical characterization of P centers in (100)Si-SiO2 structures: The influence of surface potential on passivation during post metallization anneal. J. Appl. Phys. 88, 938.CrossRefGoogle Scholar
Razouk, R.R. and Deal, B. E. (1979). Dependence of interface state density on silicon thermal oxidation process variables. J. Electrochem. Soc. 126, 1573.CrossRefGoogle Scholar
Reed, L. and Plummer, J. D. (1988). Chemistry of Si-SiO2 interface trap annealing. J. Appl. Phys. 63, 5776.CrossRefGoogle Scholar
Ricksand, A. and Engström, O. (1991). Thermally activated capture of charge carriers into irradiation induced Si/SiO2 interface states. J. Appl. Phys. 70, 6927.CrossRefGoogle Scholar
Rossi, M., Mun, B. S., Enta, Y. et al. (2008). In situ observation of wet oxidation kinetics on Si(100) via ambient pressure x-ray photoemission spectroscopy. J. Appl. Phys. 103, 044104.CrossRefGoogle Scholar
Rudra, J. K. and Fowler, B. W. (1987). Oxygen vacancy and the Eʹ1 center in crystalline SiO2. Phys. Rev. B 35, 8223.CrossRefGoogle Scholar
Salh, R. (2011). Silicon nanocluster in silicon dioxide: cathodoluminescence, energy dispersive X-ray analysis, infrared spectroscopy studies, crystalline silicon – properties and uses. Available at: .
Sands, D., Brunson, K. M. and Tayarani-Najaran, M. H. (1992). Measured intrinsic defect density throughout the entire band gap at the (100) Si/SiO2 interface. Semicond. Sci. Technol. 7, 1091.CrossRefGoogle Scholar
Stesmans, A. (1986). Electron spin resonance of [11], [11] and [11] oriented dangling orbital Po defects at the (111) Si/SiO2 interface. Appl. Phys. Lett. 48, 972.CrossRefGoogle Scholar
Stesmans, A. (1996a). Revision of H2 passivation of P interface defects in standard (111) Si/SiO2. Appl. Phys. Lett. 68, 2723.CrossRefGoogle Scholar
Stesmans, A. (1996b). Passivation of P0 and P1 interface defects in thermal (100) Si/SiO2 with molecular hydrogen. Appl. Phys. Lett. 68, 2076.CrossRefGoogle Scholar
Stesmans, A. (2000). Dissociation kinetics of hydrogen-passivated P defects at the (111) Si/SiO2 interface. Phys. Rev. B61, 8393.CrossRefGoogle Scholar
Stesmans, A. and Afanas’ev, V. V. (1998). Electron spin resonance features of interface defects in thermal (100) Si/SiO2. Appl. Phys. Lett. 83, 2449.Google Scholar
Sunaga, T., Lyon, S. A. and Johnson, W. C. (1982). Interface-state generation during avalanche injection of electrons from Si into SiO2. Appl. Phys. Lett. 40, 810.CrossRefGoogle Scholar
Svensson, C. (1978). The defect structure of the Si-SiO2 interface, a model based on trivalent silicon and its hydrogen “compounds.” In The Physics of SiO2 and its Interfaces. Proceedings of the International Topical Conference, Yorktown Heights, New York, March 22–24, 1978. Oxford: Pergamon Press, p. 328.CrossRefGoogle Scholar
Thoan, N. H., Keunen, K., Afanas’ev, V. V. and Stesmans, A. (2011). Interface state energy distribution and P defects at Si(100)/SiO2 interfaces: Comparison to (111) and (100) silicon distributions. J. Appl. Phys. 109, 013710.CrossRefGoogle Scholar
Tu, Y. and Tersoff, J. (2000). Structure and energetics of the Si-SiO2 interface. Phys. Rev. Lett. 84, 4393.CrossRefGoogle ScholarPubMed
Tu, Y. and Tersoff, J. (2002). Microscopic dynamics of silicon oxidation. Phys. Rev. Lett. 89, 086102.CrossRefGoogle ScholarPubMed
Uren, M. J., Stathis, J. H. and Cartier, E. (1996). Conductance measurements in P centers at the (111) Si:SiO2 interface. J. Appl. Phys. 80, 3915.CrossRefGoogle Scholar
Watanabe, T., Tatsumura, K. and Ohdomari, I. (2006). New linear-parabolic rate equation for thermal oxidation of silicon. Phys. Rev. Lett. 96, 196102.CrossRefGoogle ScholarPubMed
Weeks, R. A. (1963). Paramagnetic spectra of Eʹ2 centers in crystalline quartz. Phys. Rev. 130, 570.CrossRefGoogle Scholar
Winokur, P. S., BoeschJr., H. E., McGarrity, J. M. and McLean, F. B. (1979). Two-stage process for buildup of radiation-induced interface states. J. Appl. Phys. 50, 3492.CrossRefGoogle Scholar
Wu, J. K., Lyon, S. A. and Johnson, W. C. (1983). Temperature and field dependence of the generation of interface states in the Si-SiO2 system after high-field stress. Appl. Phys. Lett. 42, 585.CrossRefGoogle Scholar
Yamasaki, T., Kameta, C., Uchiyama, T., Uda, T. and Terakura, K. (2001). Geometric and electronic structures of SiO2/Si(001) interfaces. Phys. Rev. B 63, 115314.CrossRefGoogle Scholar
Yamashita, Y., Yamamoto, S., Yoshinobu, J. et al. (2006). Direct observation of site specific valence electronic structure at the SiO2/Si interface. Phys. Rev. B 73, 045336.CrossRefGoogle Scholar
Zaininger, K. H. (1966). Electron bombardment of MOS capacitors. Appl. Phys. Lett. 8, 140.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×