Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T08:19:23.020Z Has data issue: false hasContentIssue false

Chapter 5 - Brain Imaging of Reward Dysfunction in Unipolar and Bipolar Disorders

from Section 3 - Functional and Neurochemical Brain Studies

Published online by Cambridge University Press:  12 January 2021

Sudhakar Selvaraj
Affiliation:
UTHealth School of Medicine, USA
Paolo Brambilla
Affiliation:
Università degli Studi di Milano
Jair C. Soares
Affiliation:
UT Harris County Psychiatric Center, USA
Get access

Summary

In recent years, there has been tremendous support for working toward the RDoC goals of identifying the neurobiological mechanisms that cut across or are common to multiple psychiatric disorders. Identifying the pathophysiological mechanisms underlying transdiagnostic symptoms will improve the validity of disease classifications by grouping individuals based on multiple dimensions of behavior and biology. This could potentially account for heterogeneity and comorbidity observed among DSM diagnostic categories.

Type
Chapter
Information
Mood Disorders
Brain Imaging and Therapeutic Implications
, pp. 39 - 48
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Insel, T, Cuthbert, B, Garvey, M, et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry. 2010; 167(7): 748751. https://doi.org/10.1176/appi.ajp.2010.09091379Google Scholar
Positive Valence systems workshop proceedings - National Institute of Mental Health. (2011b). Positive valence systems: Workshop proceedings. Retrieved from www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/positive-valence-systems-workshop-proceedings.shtmlGoogle Scholar
Sanislow, CA, Pine, DS, Quinn, KJ, et al. Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology. 2010; 119(4): 631639. https://doi.org/10.1037/a0020909CrossRefGoogle ScholarPubMed
Der-Avakian, A, Markou, A, The neurobiology of Anhedonia and other reward-related deficits. Trends Neurosci. 2012 January; 35(1): 6877. DOI:10.1016/j.tins.2011.11.005. Epub 2011 December 15.CrossRefGoogle ScholarPubMed
Haber, Suzanne N, Knutson, Brian, The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology. 2010 January; 35(1): 426. DOI:10.1038/npp.2009.129.CrossRefGoogle ScholarPubMed
Peciña, Susana, Berridge, Kent C., Hedonic hot spot in nucleus accumbens shell: Where do μ-Opioids cause increased hedonic impact of sweetness? Journal of Neuroscience. 2005 December 14; 25(50): 1177711786.CrossRefGoogle ScholarPubMed
O’Doherty, John P, Deichmann, Ralf, Critchley, Hugo D, Dolan, Raymond J, Neural responses during anticipation of a primary taste reward. Neuron. 2002 February 28; 33(5): 815826. DOI:10.1016/s0896-6273(02)00603-7.CrossRefGoogle ScholarPubMed
Schultz, . Neural substrate of prediction and reward. Science. 1997 March 14; 275(5306): 15931599.CrossRefGoogle ScholarPubMed
Stauffer, William R., Yang, Aimei, Borel, Melodie, et al. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell. 2016 September 8; 166(6): 15641571.e6.CrossRefGoogle ScholarPubMed
Chase, Henry W, Kumar, Poornima, Eickhoff, Simon B, Dombrovski, Alexandre Y, Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cogn Affect Behav Neurosci. 2015 June; 15(2): 435459.CrossRefGoogle ScholarPubMed
Garrison, Kathleen A, Santoyo, Juan F, Davis, Jake H, et al. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report. Front Hum Neurosci. 2013; 7: 440. Published online 2013 August 6.CrossRefGoogle ScholarPubMed
Diederen, Kelly M.J., Ziauddeen, Hisham, Vestergaard, Martin D., et al. Dopamine modulates adaptive prediction error coding in the human midbrain and striatum. Journal of Neuroscience. 2017 February 15; 37(7): 17081720;CrossRefGoogle ScholarPubMed
Jocham, Gerhard, Klein, Tilmann A, Ullsperger, Markus, Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011 February 2; 31(5): 16061613. DOI:10.1523/JNEUROSCI.3904-10.CrossRefGoogle ScholarPubMed
Pessiglione, Mathias, Seymour, Ben, Flandin, Guillaume, Dolan, Raymond J, Frith, Chris D, Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006 August 31; 442(7106): 10421045. DOI:10.1038/nature05051. Epub 2006 August 23.CrossRefGoogle ScholarPubMed
Keren, H, O’Callaghan, G, Vidal-Ribas, P, et al. Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry. 2018; 175(11): 11111120.CrossRefGoogle ScholarPubMed
Fischer, AS, Ellwood-Lowe, ME, Colich, NL, et al. Reward-circuit biomarkers of risk and resilience in adolescent depression. Journal of Affective Disorders. 2019; 246: 902909.Google Scholar
Luking, KR, Pagliaccio, D, Luby, JL, Barch, DM. Depression risk predicts blunted neural responses to gains and enhanced responses to losses in healthy children. Journal of the American Academy of Child & Adolescent Psychiatry. 2016; 55(4): 328337.CrossRefGoogle ScholarPubMed
Olino, TM, McMakin, DL, Morgan, JK, et al. Reduced reward anticipation in youth at high-risk for unipolar depression: A preliminary study. Developmental Cognitive Neuroscience. 2014; 8: 5564.CrossRefGoogle ScholarPubMed
Stringaris, A, Vidal-Ribas Belil, P, Artiges, E, et al. The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry. 2015; 172(12): 12151223.Google Scholar
Takamura, M, Okamoto, Y, Okada, G, et al. Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2017; 79: 317323.CrossRefGoogle ScholarPubMed
Knutson, B, Bhanji, JP, Cooney, RE, Atlas, LY, Gotlib, IH. Neural responses to monetary incentives in major depression. Biological Psychiatry. 2008; 63(7): 686692.CrossRefGoogle ScholarPubMed
Gotlib, IH, Hamilton, JP, Cooney, RE, et al. Neural processing of reward and loss in girls at risk for major depression. Archives of General Psychiatry. 2010; 67(4): 380387.CrossRefGoogle ScholarPubMed
Proudfit, GH. The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology. 2015; 52(4): 449459.CrossRefGoogle ScholarPubMed
Foti, D, Hajcak, G. Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology. 2009; 81(1): 18.CrossRefGoogle ScholarPubMed
Foti, D, Weinberg, A, Bernat, EM, Proudfit, GH. Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity. Clinical Neurophysiology. 2015; 126(7): 13381347.CrossRefGoogle Scholar
Bress, JN, Foti, D, Kotov, R, Klein, DN, Hajcak, G. Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology. 2013; 50(1): 7481.CrossRefGoogle ScholarPubMed
Kujawa, A, Hajcak, G, Klein, DN. Reduced reward responsiveness moderates the effect of maternal depression on depressive symptoms in offspring: Evidence across levels of analysis. Journal of Child Psychology and Psychiatry. 2019; 60(1): 8290.CrossRefGoogle ScholarPubMed
Whitton, AE, Kakani, P, Foti, D, et al. Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1(1): 8795.Google ScholarPubMed
Weinberg, A, Shankman, SA. Blunted reward processing in remitted melancholic depression. Clinical Psychological Science. 2017; 5(1): 1425.Google Scholar
Dombrovski, AY, Szanto, K, Clark, L, Reynolds, CF, Siegle, GJ. Reward signals, attempted suicide, and impulsivity in late-life depression. JAMA Psychiatry Chic Ill. 2013; 70(10). DOI:10.1001/jamapsychiatry.2013.75.Google ScholarPubMed
Gradin, VB, Kumar, P, Waiter, G, et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 2011; 134(Pt 6): 17511764. DOI:10.1093/brain/awr059.CrossRefGoogle ScholarPubMed
Kumar, P, Waiter, G, Ahearn, T, et al. Abnormal temporal difference reward-learning signals in major depression. Brain. 2008; 131(Pt 8): 20842093. DOI:10.1093/brain/awn136.CrossRefGoogle ScholarPubMed
Kumar, P, Goer, F, Murray, L, et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology. 2018; 43(7): 15811588. DOI:10.1038/s41386-018-0032-x.CrossRefGoogle ScholarPubMed
Rutledge, RB, Moutoussis, M, Smittenaar, P, et al. Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry. 2017; 74(8): 790797.CrossRefGoogle ScholarPubMed
Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry. 2003; 160(4): 636645. DOI:10.1176/appi.ajp.160.4.636.CrossRefGoogle ScholarPubMed
Pizzagalli, DA. Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014; 10(1): 393423. DOI:10.1146/annurev-clinpsy-050212-185606.CrossRefGoogle Scholar
Olino, TM, Silk, JS, Osterritter, C, Forbes, EE. Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. J Child Adolesc Psychopharmacol. 2015; 25(9): 711721. DOI:10.1089/cap.2014.0165.CrossRefGoogle ScholarPubMed
Luking, KR, Pagliaccio, D, Luby, JL, Barch, DM. Reward processing and risk for depression across development. Trends Cogn Sci. 2016; 20(6): 456468. DOI:10.1016/j.tics.2016.04.002.CrossRefGoogle ScholarPubMed
Stringaris, A, Vidal-Ribas Belil, P, Artiges, E, et al. The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. Am J Psychiatry. 2015; 172(12): 12151223. DOI:10.1176/appi.ajp.2015.14101298.CrossRefGoogle Scholar
Morgan, JK, Olino, TM, McMakin, DL, Ryan, ND, Forbes, EE. Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiol Dis. 2013; 52: 6674. DOI:10.1016/j.nbd.2012.03.039.CrossRefGoogle ScholarPubMed
Telzer, EH, Fuligni, AJ, Lieberman, MD, Galván, A. Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proc Natl Acad Sci. 2014; 111(18): 66006605. DOI:10.1073/pnas.1323014111.Google Scholar
Alloy, LB, Nusslock, R. Future directions for understanding adolescent bipolar spectrum disorders: A reward hypersensitivity perspective. Journal of Clinical Child & Adolescent Psychology. 2019; 48(4): 669683.CrossRefGoogle ScholarPubMed
Nusslock, R, Almeida, JR, Forbes, EE, et al. Waiting to win: Elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disorders. 2012; 14(3): 249260.CrossRefGoogle ScholarPubMed
Bermpohl, F, Kahnt, T, Dalanay, U, et al. Altered representation of expected value in the orbitofrontal cortex in mania. Human Brain Mapping. 2010; 31(7): 958969.Google Scholar
Chase, HW, Nusslock, R, Almeida, JR, et al. Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disorders. 2013; 15(8): 839854.CrossRefGoogle ScholarPubMed
Caseras, X, Lawrence, NS, Murphy, K, Wise, RG, Phillips, ML. Ventral striatum activity in response to reward: Differences between bipolar I and II disorders. American Journal of Psychiatry. 2013; 170(5): 533541.CrossRefGoogle ScholarPubMed
Cattarinussi, G, Di Giorgio, A, Wolf, RC, Balestrieri, M, Sambataro, F. Neural signatures of the risk for bipolar disorder: A meta‐analysis of structural and functional neuroimaging studies. Bipolar Disorders. 2019; 21(3): 215227.Google Scholar
Schreiter, S, Spengler, S, Willert, A, et al. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder. Psychological Medicine. 2016; 46(15): 31873198.Google Scholar
Yip, SW, Worhunsky, PD, Rogers, RD, Goodwin, GM. Hypoactivation of the ventral and dorsal striatum during reward and loss anticipation in antipsychotic and mood stabilizer-naive bipolar disorder. Neuropsychopharmacology. 2015; 40(3): 658.CrossRefGoogle ScholarPubMed
Mason, L, Eldar, E, Rutledge, RB. Mood instability and reward dysregulation—a neurocomputational model of bipolar disorder. JAMA Psychiatry. 2017; 74(12): 12751276.CrossRefGoogle ScholarPubMed
Linke, J, King, AV, Rietschel, M, et al. Increased medial orbitofrontal and amygdala activation: Evidence for a systems-level endophenotype of bipolar I disorder. American Journal of Psychiatry. 2012; 169(3): 316325.CrossRefGoogle ScholarPubMed
O’Sullivan, N, Szczepanowski, R, El-Deredy, W, Mason, L, Bentall, RP. fMRI evidence of a relationship between hypomania and both increased goal-sensitivity and positive outcome-expectancy bias. Neuropsychologia. 2011; 49(10): 28252835.Google Scholar
Dutra, SJ, Cunningham, WA, Kober, H, Gruber, J. Elevated striatal reactivity across monetary and social rewards in bipolar I disorder. Journal of Abnormal Psychology. 2015; 124(4): 890.CrossRefGoogle ScholarPubMed
Mason, L, O’Sullivan, N, Blackburn, M, Bentall, R, El-Deredy, W. I want it now! Neural correlates of hypersensitivity to immediate reward in hypomania. Biological Psychiatry. 2012; 71(6): 530537.CrossRefGoogle ScholarPubMed
Mason, L, Trujillo-Barreto, NJ, Bentall, RP, El-Deredy, W. Attentional bias predicts increased reward salience and risk taking in bipolar disorder. Biological Psychiatry. 2016; 79(4): 311319.CrossRefGoogle ScholarPubMed
Abler, B, Greenhouse, I, Ongur, D, Walter, H, Heckers, S. Abnormal reward system activation in mania. Neuropsychopharmacology. 2008; 33(9): 2217.Google Scholar
Sharma, A, Satterthwaite, TD, Vandekar, L, et al. Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. Psychiatry Research: Neuroimaging. 2016; 254: 1825.CrossRefGoogle ScholarPubMed
Singh, MK, Kelley, RG, Howe, ME, et al. Reward processing in healthy offspring of parents with bipolar disorder. JAMA Psychiatry. 2014; 71(10): 11481156. DOI:10.1001/jamapsychiatry.2014.1031.Google Scholar
Manelis, A, Almeida, JRC, Stiffler, R, et al. Anticipation-related brain connectivity in bipolar and unipolar depression: A graph theory approach. Brain J Neurol. 2016; 139(Pt 9): 25542566. DOI:10.1093/brain/aww157.CrossRefGoogle ScholarPubMed
Redlich, R, Dohm, K, Grotegerd, D, et al. Reward processing in unipolar and bipolar depression: A functional MRI study. Neuropsychopharmacology. 2015; 40(11): 2623.Google Scholar
Satterthwaite, TD, Kable, JW, Vandekar, L, et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology. 2015; 40(9): 2258.CrossRefGoogle ScholarPubMed
Glazer, JE, Kelley, NJ, Pornpattananangkul, N, Nusslock, R. Hypomania and depression associated with distinct neural activity for immediate and future rewards. Psychophysiology. 2019; 56(3): e13301.CrossRefGoogle ScholarPubMed
Groves, AR, Beckmann, CF, Smith, SM, Woolrich, MW. Linked independent component analysis for multimodal data fusion. Neuroimage. 2011; 54: 21982217.CrossRefGoogle ScholarPubMed
Calhoun, VD, Sui, J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 2016; 230244. DOI:10.1016/j.bpsc.2015.12.005.Google Scholar
Heller, AS, Fox, AS, Wing, EK, et al. The Neurodynamics of affect in the laboratory predicts persistence of real-world emotional responses. J Neurosci. 2015; 35(29): 1050310509. DOI:10.1523/JNEUROSCI.0569-15.CrossRefGoogle ScholarPubMed
Kasanova, Z, Ceccarini, J, Frank, MJ, Amelsvoort, TA van, Myin-Germeys, I. Striatal dopaminergic modulation of reinforcement learning predicts reward—oriented behavior in daily life. Biol Psychol. Published online 2017. DOI:10.1016/j.biopsycho.2017.04.014.CrossRefGoogle Scholar
Bakker, JM, Goossens, L, Kumar, P, et al. From laboratory to life: Associating brain reward processing with real-life motivated behaviour and symptoms of depression in non-help-seeking young adults. Psychol Med. 2019; 49(14): 24412451. DOI:10.1017/S0033291718003446.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×