Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T23:55:37.928Z Has data issue: false hasContentIssue false

2 - BPS states and the P = W conjecture

Published online by Cambridge University Press:  05 April 2014

W. -Y. Chuang
Affiliation:
National Taiwan University
D.-E. Diaconescu
Affiliation:
Rutgers University
G. Pan
Affiliation:
Rutgers University
Leticia Brambila-Paz
Affiliation:
Centro de Investigación en Matemáticas A.C. (CIMAT), Mexico
Peter Newstead
Affiliation:
University of Liverpool
Richard P. Thomas
Affiliation:
Imperial College of Science, Technology and Medicine, London
Oscar García-Prada
Affiliation:
Consejo Superior de Investigaciones Cientificas, Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Moduli Spaces , pp. 132 - 150
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] K., Behrend. Donaldson-Thomas type invariants via microlocal geometry. Ann. of Math. (2), 170(3):1307–1338, 2009.Google Scholar
[2] A. A., Beïlinson, J., Bernstein, and P., Deligne. Faisceaux pervers. Analysis and topology on singular spaces, I (Luminy, 1981). Astérisque, 100:5–171, 1982.Google Scholar
[3] T., Bridgeland. Hall algebras and curve-counting invariants. J. Amer. Math. Soc., 24(4):969–998, 2011.Google Scholar
[4] J., Bryan and R., Pandharipande. The local Gromov-Witten theory of curves. J. Amer. Math. Soc., 21(1):101–136 (electronic), 2008. With an appendix by Bryan, C. Faber, A. Okounkov, and Pandharipande.
[5] W.-Y., Chuang, D.-E., Diaconescu, and G., Pan. Wallcrossing and cohomology of the moduli space of Hitchin pairs. Commun. Num. Theor. Phys., 5:1–56, 2011.Google Scholar
[6] W.-Y., Chuang, D.-E., Diaconescu, and G., Pan. Chamber structure and wallcrossing in the ADHM theory of curves II. J. Geom. Phys., 62(2):548–561, 2012.Google Scholar
[7] K., Corlette. Flat G-bundles with canonical metrics. J. Differ. Geom., 28(3):361–382, 1988.Google Scholar
[8] M., de Cataldo, T., Hausel, and L., Migliorini. Topology of Hitchin systems and Hodge theory of character varieties. Ann. of Math. (2), 175(3):1329–1407, 2012.Google Scholar
[9] M. A. A., de Cataldo and L., Migliorini. The decomposition theorem, perverse sheaves and the topology of algebraic maps. Bull. Amer. Math. Soc. (N.S.), 46(4):535–633, 2009.Google Scholar
[10] M. A. A., de Cataldo and L., Migliorini. The perverse filtration and the Lefschetz hyperplane theorem. Ann. of Math. (2), 171(3):2089–2113, 2010.Google Scholar
[11] F., Denef and G. W., Moore. Split states, entropy enigmas, holes and halos. JHEP, 1111:129, 2011.Google Scholar
[12] D. E., Diaconescu. Moduli of ADHM sheaves and local Donaldson-Thomas theory. J. Geom. Phys., 64(4):763–799.
[13] R., Dijkgraaf, C., Vafa, and E., Verlinde. M-theory and a topological string duality, hep-th/0602087, 2006.
[14] T., Dimofte and S., Gukov. Refined, motivic, and quantum. Lett. Math. Phys., 91:1, 2010.
[15] S. K., Donaldson. Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. (3), 55(1):127–131, 1987.Google Scholar
[16] T., Eguchi and H., Kanno. Five-dimensional gauge theories and local mirror symmetry. Nucl. Phys., B586:331–345, 2000.Google Scholar
[17] T., Eguchi and H., Kanno. Topological strings and Nekrasov's formulas. JHEP, 12:006, 2003.Google Scholar
[18] R., Gopakumar and C., Vafa. M theory and topological strings II. arXiv:9812127, 1998.
[19] T., Hausel and F., Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. Invent. Math., 174(3):555–624, 2008. With an appendix by Nicholas M. Katz.Google Scholar
[20] N. J., Hitchin. The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3), 55(1):59–126, 1987.Google Scholar
[21] T. J., Hollowood, A., Iqbal, and C., Vafa. Matrix models, geometric engineering and elliptic genera. JHEP, 03:069, 2008.Google Scholar
[22] S., Hosono, M.-H., Saito, and A., Takahashi. Relative Lefschetz action and BPS state counting. Internal Math. Res. Not. 2001(15):783–816, 2001.Google Scholar
[23] Z., Hua. Chern-Simons functions on toric Calabi-Yau threefolds and Donaldson-Thomas theory. arXiv:1103.1921, 2011.
[24] D., Huybrechts and M., Lehn. The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics, E31. Braunschweig: Friedrich Vieweg & Sohn, 1997.
[25] K. A., Intriligator, D. R., Morrison, and N., Seiberg. Five-dimensional super-symmetric gauge theories and degenerations of Calabi-Yau spaces. Nucl. Phys., B497:56–100, 1997.Google Scholar
[26] A., Iqbal and A.-K., Kashani-Poor. Instanton counting and Chern-Simons theory. Adv. Theor. Math. Phys., 7:457–497, 2004.Google Scholar
[27] A., Iqbal and A.-K., Kashani-Poor. SU(N) geometries and topological string amplitudes. Adv. Theor. Math. Phys., 10:1–32, 2006.Google Scholar
[28] A., Iqbal, C., Kozcaz, and C., Vafa. The refined topological vertex. JHEP, 10:069, 2009.Google Scholar
[29] S., Katz, P., Mayr, and C., Vafa. Mirror symmetry and exact solution of 4-D N=2 gauge theories: 1. Adv. Theor. Math. Phys., 1:53–114, 1998.Google Scholar
[30] S. H., Katz, A., Klemm, and C., Vafa. M-theory, topological strings and spinning black holes. Adv. Theor. Math. Phys., 3:1445–1537, 1999.Google Scholar
[31] S. H., Katz and C., Vafa. Geometric engineering of N=1 quantum field theories. Nucl. Phys., B497:196–204, 1997.Google Scholar
[32] Y., Konishi. Topological strings, instantons and asymptotic forms of Gopakumar-Vafa invariants. hep-th/0312090, 2003.
[33] M., Kontsevich and Y., Soibelman. Stability structures, Donaldson-Thomas invariants and cluster transformations. arXiv.org:0811.2435, 2008.
[34] A. E., Lawrence and N., Nekrasov. Instanton sums and five-dimensional gauge theories. Nucl. Phys., B513:239–265, 1998.Google Scholar
[35] J., Li, K., Liu, and J., Zhou. Topological string partition functions as equivariant indices. Asian J. Math., 10(1):81–114, 2006.Google Scholar
[36] D., Maulik, N., Nekrasov, A., Okounkov, and R., Pandharipande. Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math., 142(5):1263–1285, 2006.Google Scholar
[37] D., Maulik, R., Pandharipande, and R., Thomas. Curves on K3 surfaces and modular forms. J. Topology, 3(4):937–996, 2010.Google Scholar
[38] D., Maulik and Z., Yun. Macdonald formula for curves with planar singularities. arXiv:1107.2175.
[39] L., Migliorini and V., Shende. A support theorem for Hilbert schemes of planar curves. arXiv:1107.2355, 2011.
[40] D. R., Morrison and N., Seiberg. Extremal transitions and five-dimensional supersymmetric field theories. Nucl. Phys., B483:229–247, 1997.Google Scholar
[41] S., Mozgovoy. Solution of the motivic ADHM recursion formula. Math. Res. Not., 2012(18):4218–4244, 2012.Google Scholar
[42] N. A., Nekrasov. Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys., 7:831–864, 2004.Google Scholar
[43] A., Okounkov and R., Pandharipande. The local Donaldson-Thomas theory of curves. Geom. Topol., 14:1503–1567, 2010.Google Scholar
[44] R., Pandharipande and R. P., Thomas. Curve counting via stable pairs in the derived category. Invent. Math., 178(2):407–447, 2009.Google Scholar
[45] R., Pandharipande and R. P., Thomas. Stable pairs and BPS invariants. J. Amer. Math. Soc., 23(1):267–297, 2010.Google Scholar
[46] C. T., Simpson. Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math., 75(1):5–95, 1992.Google Scholar
[47] J., Stoppa and R. P., Thomas. Hilbert schemes and stable pairs: GIT and derived category wall crossings. Bull. Soc. Math. France, 139(3):297–339, 2011.Google Scholar
[48] Y., Toda. Curve counting theories via stable objects I. DT/PT correspondence. J. Amer. Math. Soc., 23(4):1119–1157, 2010.Google Scholar
[49] Y., Toda. Generating functions of stable pair invariants via wall-crossings in derived categories. In New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), M.-H., Saito, S., Hosono, and K., Yoshioka, eds. Advanced Studies in Pure Mathematics 59. Tokyo: Mathematical Society of Japan, 2010, pp. 389–434.
[50] Y., Yuan. Determinant line bundles on moduli spaces of pure sheaves on rational surfaces and strange duality. Asian J. Math., 16(3):451–478, 2012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×