Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-18T19:10:35.491Z Has data issue: true hasContentIssue false

Chap 10 - CHILDHOOD FIBROBLASTIC AND MYOFIBROBLASTIC PROLIFERATIONS OF VARIABLE BIOLOGIC POTENTIAL

Published online by Cambridge University Press:  01 March 2011

Markku Miettinen
Affiliation:
Armed Forces Institute of Pathology, Washington DC
Get access

Summary

The fibroblastic and myofibroblastic lesions of childhood with variable biologic potential covered in this chapter include neurothekeoma, plexiform fibrohistiocytic tumor, angiomatoid fibrous histiocytoma, inflammatory myofibroblastic tumor, and infantile fibrosarcoma.

Neurothekeoma is a benign myofibroblastic tumor separate from true nerve sheath myxoma. It is included here because of rare occurrence of atypical variants and its resemblance to plexiform fibrohistiocytic tumor. All other lesions have potential mainly for local recurrence; however, they also have a variable but usually low risk for metastasis.

Understanding of the molecular genetics of all of these tumors has improved because of the discovery of tumor-specific fusion translocations in angiomatoid fibrous histiocytoma, inflammatory myofibroblastic tumor, and infantile fibrosarcoma. These gene rearrangements are diagnostic markers, and the corresponding gene products probably play a pathogenetic role.

Other borderline to malignant fibroblastic lesions that are more typical of adults can also occur in children, for example, low-grade fibromyxoid sarcoma and dermatofibrosarcoma protuberans. These tumors, including giant cell fibroblastoma, the juvenile variant of DFSP, are discussed in Chapter 13.

NEUROTHEKEOMA

Originally described by Gallager and Helwig in1980 and then thought to be a nerve sheath tumor, neurothekeoma has recently been verified conclusively as a fibroblastic-myofibroblastic neoplasm that is unrelated to nerve sheath myxoma and therefore should be separated from it. The original description of neurothekeoma contained a minor component of nerve sheath myxomas (because these tumors are far less common than neurothekeomas), and similarly, the early reports on nerve sheath myxomas probably contained examples of myxoid neurothekeomas, because at that time immunohistochemical studies were not available for conclusive separation of these entities.

Type
Chapter
Information
Modern Soft Tissue Pathology
Tumors and Non-Neoplastic Conditions
, pp. 285 - 307
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gallager, RL, Helwig, EB. Neurothekeoma – a benign cutaneous tumor of neural origin. Am J Clin Pathol 1980;74:759–764.
Laskin, WB, Fetsch, JF, Miettinen, M. The neurothekeoma: Immunohistochemical analysis distinguishes the true nerve sheath myxoma from its mimics. Hum Pathol 2000;31:1230–1241.
Barnhill, RL, Dickersin, GR, Nickeleit, V, Bhan, AK, Muhlbauer, JE, Phillips, ME. Studies on the cellular origin of neurothekeoma: clinical, light microscopic, immunohistochemical and ultrastructural observations. J Am Acad Dermatol 1991;25:80–88.
Argenyi, ZB, Boit, PE, Santa Cruz, D, Swanson, PE, Kuzner, H. Nerve sheath myxoma (neurothekeoma) of the skin: light microscopic and immunohistochemical reappraisal of the cellular variant. J Cutan Pathol 1993;20:294–303.
Fetsch, JF, Laskin, WB, Hallman, JR, Lupton, GP, Miettinen, M. Neurothekeoma: an analysis of 178 tumors with detailed immunohistochemical data and long-term patient follow-up information. Am J Surg Pathol 2007;31:1103–1114.
Hornick, JL, Fletcher, CDM. Cellular neurothekeoma: detailed characterization in a series of 133 cases. Am J Surg Pathol 2007;31:329–340.
Page, RN, King, R, Mihm, MC Jr, Googe, PB. Microphthalmia transcription factor and NKI/C3 expression in cellular neurothekeoma. Mod Pathol 2004;17:230–234.
Enzinger, FM, Zhang, R. Plexiform fibrohistiocytic tumor presenting in children and young adults: An analysis of 65 cases. Am J Surg Pathol 1988;12:818–826.
Hollowood, K, Holley, MP, Fletcher, CDM. Plexiform fibrohistiocytic tumour: clinicopathological, immunohistochemical and ultrastructural analysis in favour of a myofibroblastic lesion. Histopathology 1991;19:503–513.
Zelger, B, Weinlich, G, Steiner, H, Zelger, BG, Egarter-Vigl, E. Dermal and subcutaneous variants of plexiform fibrohistiocytic tumor. Am J Surg Pathol 1997;21:235–241.
Remstein, ED, Arndt, CAS, Nascimento, AG. Plexiform fibrohistiocytic tumor: clinicopathologic analysis of 22 cases. Am J Surg Pathol 1999;23:662–670.
Leclerc, S, Hamel-Teillac, D, Oger, P, Brousse, N, Fraitag, S. Plexiform fibrohistiocytic tumor: three unusual cases occurring in infancy. J Cutan Pathol 2005;32:572–576.
Moosavi, C, Jha, P, Fanburg-Smith, JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger, MD. Ann Diagn Pathol 2007;11:313–319.
Redlich, GC, Montgomery, KD, Allgood, GA, Joste, NE. Plexiform fibrohistiocytic tumor with a clonal cytogenetic anomaly. Cancer Genet Cytogenet 1999;108:141–143.
Smith, S, Fletcher, CD, Smith, MA, Gusterson, BA. Cytogenetic analysis of a plexiform fibrohistiocytic tumor. Cancer Genet Cytogenet 1990;48:31–34.
Enzinger, FM. Angiomatoid malignant fibrous histiocytoma: A distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer 1979;44: 2147–2157.
Costa, MJ, Weiss, SW. Angiomatoid malignant fibrous histiocytoma: A follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol 1990;14:1126–1132.
Leu, HJ, Makek, M. Angiomatoid malignant fibrous histiocytoma. Virchows Arch A Pathol Anat Histopathol 1982;395:99–107.
Fanburg-Smith, JF, Miettinen, M. Angiomatoid “malignant” fibrous histiocytoma: A clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol 1999;30:1336–1343.
Pettinato, G, Manivel, JC, Rosa, G, Petrella, G, Jaszcz, W. Angiomatoid malignant fibrous histiocytoma: cytologic, immunohistochemical, ultrastructural, and flow cytometric study of 20 cases. Mod Pathol 1990;3:479–487.
Chow, LT, Allen, PW, Kumta, SM, Griffith, J, Li, CK, Leung, PC. Angiomatoid malignant fibrous histiocytoma: report of an unusual case with highly aggressive clinical course. J Foot Ankle Surg 1998;37:235–238.
Seo, IS, Frizerra, G, Coates, TD, Mirkin, LD, Cohen, MD. Angiomatoid malignant fibrous histiocytoma with extensive lymphadenopathy simulating Castleman's disease. Pediatric Pathol 1986;6:233–247.
Fletcher, CDM. Angiomatoid “malignant fibrous histiocytoma”: an immunohistochemical study indicative of myoid differentiation. Hum Pathol 1991;22: 563–568.
Smith, MEF, Costa, MJ, Weiss, SW. Evaluation of CD68 and other histiocytic antigens in angiomatoid malignant fibrous histiocytoma. Am J Surg Pathol 1991;15:757–763.
Hasegawa, T, Seki, K, Ono, K, Hirohashi, S. Angiomatoid (malignant) fibrous histiocytoma: a peculiar low-grade tumor showing immunophenotypic heterogeneity and ultrastructural variations. Pathol Int 2000;50:731–738.
Costa, MJ, McGlothlen, L, Pierce, M, Munn, R, Vogt, PJ. Angiomatoid features in fibrohistiocytic sarcomas. Immunohistochemical, ultrastructural, and clinical distinction from vascular neoplasms. Arch Pathol Lab Med 1995;119:1065–1071.
Antonescu, CR, Dal Cin, P, Nafa, K, Teot, , Surti, U, Fletcher, CD. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:1051–1060.
HallorK,H K,H, Merrtens, F, Jin, Y, Meis-Kindblom, J, Kindblom, LG, Behrendtz, M. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005;44:97–102.
Hallor, KH, Micci, F, Meis-Kindblom, J, Kindblom, LG, Bacchnini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109–116.
Coffin, CM, Watterson, J, Priest, JR, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859–872.
Coffin, CM, Dehner, LP, Meis-Kindblom, JM. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations. Semin Diagn Pathol 1998;15:102–110.
Coffin, CM, Humphrey, PA, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol 1998;15:85–101.
Neuhauser, TS, Derringer, GA, Thompson, LD, Fanburg-Smith, JC, Aguilera, NS, Andriko, J. Splenic inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunophenotypic study of 12 cases. Arch Pathol Lab Med 2001;125:379–385.
Kutok, JL, Pinkus, GS, Dorfman, DM, Fletcher, CD. Inflammatory pseudotumor of lymph node and spleen: an entity biologically distinct from inflammatory myofibroblastic tumor. Hum Pathol 2001;32:1382–1387.
Chan, JKC. Inflammatory pseudotumor – a family of lesions of diverse nature and etiologies. Adv Anat Pathol 1996;3:156–171.
Ro, JY, el-Naggar, AK, Amin, MB, Sahin, AA, Ordonez, NG, Ayala, AG. Pseudosarcomatous fibromyxoid tumor of the urinary bladder and prostate: immunohistochemical, ultrastructural and DNA flow cytometric analyses of nine cases. Hum Pathol 1993;24:1203–1210.
Albores-Saavedra, J, Manivel, JC, Essenfeld, H, Dehner, LP, Drut, R, Gould, E. Pseudosarcomatous myofibroblastic proliferations in the urinary bladder of children. Cancer 1990;66:1234–1241.
Hojo, H, Newton, WA Jr, Hamoudi, AB, Qualman, SJ, Wakasa, H, Suzuki, S. Pseudosarcomatous myofibroblastic tumor of the urinary bladder in children: a study of 11 cases with review of the literature. An intergroup rhabdomyosarcoma study. Am J Surg Pathol 1995;19:1224–1236.
Harik, LR, Merino, C, Coindre, JM, Amin, MB, Pedeutour, F, Weiss, SW. Pseudosarcomatous myofibroblastic proliferations of the bladder: A clinicopathologic study of 42 cases. Am J Surg Pathol 2006;30:87–794.
Proppe, KH, Scully, RE, Rosai, J. Postoperative spindle cell nodules of genitourinary tract resembling sarcomas. Am J Surg Pathol 1984;8:101–108.
Pettinato, G, Manivel, JC, Rosa, N, Dehner, LP. Inflammatory myofibroblastic tumor (plasma cell granuloma). Clinicopathologic study of 20 cases with immunohistochemical and ultrastructural observations. Am J Clin Pathol 1990;94:538–546.
Yousem, SA, Shaw, H, Cieply, K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol 2001;32: 428–433.
Meis, JM, Enzinger, FM. Inflammatory fibrosarcoma of the mesentery and retroperitoneum: A tumor closely simulating inflammatory pseudotumor. Am J Surg Pathol 1991;15:1146–1156.
Meis-Kindblom, JM, Kjellstrom, C, Kindblom, LG. Inflammatory fibrosarcoma: update, reappraisal, and perspective on its place in the spectrum of inflammatory myofibroblastic tumors. Semin Diagn Pathol 1998;15:133–143.
Coffin, CM, Hornick, JL, Fletcher, CDM. Inflammatory myofibroblastic tumor: Comparison of clinicopathologic, histologic, and immunohistochemical features including ALK-expression in atypical and aggressive cases. Am J Surg Pathol 2007;31:509–520.
Montgomery, EA, Shuster, DD, Burkart, AL, Esteban, JM, Sgrignoli, A, Elwood, L. Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am J Surg Pathol 2006;30;1502–1512.
Rabban, JT, Zaloudek, CJ, Shekitka, KM, Tavassoli, FA. Inflammatory myofibroblastic tumor of the uterus: A clinicopathologic study of 6 cases emphasizing distinction from aggressive mesenchymal tumors. Am J Surg Pathol 2005;29:1348–1355.
Wenig, BM, Devaney, K, Bisceglia, M. Inflammatory myofibroblastic tumor of the larynx: A clinicopathologic study of eight cases simulating a malignant spindle cell neoplasm. Cancer 1995;76:2217–2229.
Burke, A, Li, L, Kling, E, Kutys, R, Virmani, R, Miettinen, M. Cardiac inflammatory myofibroblastic tumor: a “benign” neoplasm that may result in syncope, myocardial infarction, and sudden death. Am J Surg Pathol 2007;31:1115–1122.
Jeon, YK, Chang, KH, Suh, YL, Jung, HW, Park, SH. Inflammatory myofibroblastic tumor of the central nervous system: clinicopathologic analysis of 10 cases. J Neuropathol Exp Neurol 2005;64:254–259.
Ramachandra, S, Hollowood, K, Bisceglia, M, Fletcher, CDM. Inflammatory pseudotumor of soft tissues: a clinicopathological and immunohistochemical analysis of 18 cases. Histopathology 1995;27:313–323.
Donner, LR, Trompler, RA, White, RR. Progression of inflammatory myofibroblastic tumor (inflammatory pseudotumor) of soft tissue into sarcoma after several recurrences. Hum Pathol 1996;27:1095–1098.
Chan, JKC, Cheuk, W, Shimizu, M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761–768.
Cook, JR, Dehner, LP, Collins, MH, Ma, Z, Morris, SW, Coffin, CM. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: A comparative immunohistochemical study. Am J Surg Pathol 2001;25:1364–1371.
Hisaoka, M, Hussong, JW, Brown, M, Perkins, SL, Dehner, LP, Coffin, CM. Comparison of DNA ploidy, histologic and immunohistochemical findings with clinical outcome in inflammatory myofibroblastic tumors. Mod Pathol 1999;12:279–286.
Yamamoto, H, Kohashi, K, Oda, Y, Tamiya, S, Takahashi, Y, Kinoshita, Y. Absence of human herpesvirus-8 and Epstein-Barr virus in inflammatory myofibroblastic tumor with anaplastic large cell lymphoma kinase fusion gene. Pathol Int 2006;56:584–590.
Tavora, F, Shilo, K, Ozbudak, IH, Przybocki, JM, Wang, G, Travis, WD. Absence of human herpesvirus-8 in pulmonary inflammatory myofibroblastic tumor: immunohistochemical and molecular analysis of 20 cases. Mod Pathol 2007;20:995–999.
Snyder, CS, Dell-Aquila, M, Haghighi, P, Baergen, RN, Suh, YK, Yi, ES. Clonal changes in inflammatory pseudotumor of the lung. Cancer 1995;76:1545–1549.
Su, LD, Atayde-Perez, A, Sheldon, S, Fletcher, JA, Weiss, SW. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998;11:364–368.
Griffin, CA, Hawkins, AL, Dvorak, C, Henkle, C, Ellingham, T, Perlman, EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 1999;59:2776–2780.
Lawrence, B, Perez-Atayde, A, Hibbard, MK, Rubin, BP, Dal Cin, P, Pinkus, JL. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377–384.
Bridge, JA, Kanamori, M, Ma, Z, Pickering, D, Hill, DA, Lydiatt, W. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411–415.
Debelenko, LV, Arthur, DC, Pack, SD, Helman, LJ, Schrump, DS, Tsokos, M. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 2003;83:1255–1265.
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187–190.
Ma, Z, Hill, DA, Collins, MH, Morris, SW, Smegi, J, Zhou, M. Fusion of ALK to the RAN-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98–105.
Panagopoulos, I, Nilsson, T, Domanski, HA, Isaksson, M, Lindholm, P, Mertens, F. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:1181–1186.
Sukov, WR, Cheville, JC, Carlson, AW, Shearer, BM, Piatigorsky, EJ, Gregg, KL. Utility of ALK-1 protein expression and ALK rearrangements in distinguishing inflammatory myofibrolastic tumor from malignant spindle cell lesions of the urinary bladder. Mod Pathol 2007;20:592–603.
Balsaver, AM, Butler, JJ, Martin, RG. Congenital fibrosarcoma. Cancer 1967;20:1607–1616.
Chung, EB, Enzinger, FM. Infantile fibrosarcoma. Cancer 1976;38:729–739.
Soule, EH, Pritchard, DJ. Fibrosarcoma in infants and and children: a review of 110 cases. Cancer 1977;40:1711–1721.
Iwasaki, H, Enjoji, M. Infantile and adult fibrosarcomas of the soft tissues. Acta Pathol Jpn 1979;29:377–388.
Coffin, CM, Jaszcz, W, O'Shea, PA, Dehner, LP. So-called congenital-infantile fibrosarcoma – does it exist and what is it?Pediatr Pathol 1994;14:133–150.
Kodet, R, Stejskal, J, Pilat, D, Kocourkova, M, Smelhaus, V, Eckschlager, T. Congenital-infantile fibrosarcoma: a clinicopathological study of five patients entered on the Prague children's tumor registry. Pathol Res Pract 1996;192:845–853.
Cofer, BR, Vescio, PJ, Wiener, ES. Infantile fibrosarcoma: complete excision is the appropriate treatment. Ann Surg Oncol 1996;3:159–161.
Kynaston, JA, Malcolm, AJ, Craft, AW, Davies, SM, Jones, PH, King, DJ. Chemotherapy in the management of infantile fibrosarcoma. Med Pediatr Oncol 1993;21:488–493.
Nonaka, D, Sun, CCJ. Congenital fibrosarcoma with metastasis in a fetus. Pediatr Develop Pathol 2004;7:187–191.
Salloum, E, Caillaud, JM, Flamant, F, Landman, J, Lemerle, J. Poor prognosis infantile fibrosarcoma with pathologic features of malignant fibrous histiocytoma after local recurrence. Med Pediatr Oncol 1990;18:295–298.
Adam, LR, Davison, EV, Malcolm, AJ, Pearson, AD, Craft, AW. Cytogenetic analysis of a congenital fibrosarcoma. Cancer Genet Cytogenet 1991;52:37–41.
Dal Cin, P, Brock, P, Casteels-Van Daele, M, Wever, I, Damme, B, Berghe, H. Cytogenetic characterization of congenital or infantile fibrosarcoma. Eur J Pediatr 1991;150:579–581.
Sankary, S, Dickman, PS, Wiener, E, Robichaux, W, Swaney, WP, Malone, PS. Consistent numerical chromosome aberrations in congenital fibrosarcoma. Cancer Genet Cytogenet 1993;65:152–156.
Bernstein, R, Zeltzer, PM, Lin, F, Carpenter, PM. Trisomy 11 and other nonrandom trisomies in congenital fibrosarcoma. Cancer Genet Cytogenet 1994;78:82–86.
Knezevich, SR, Mcfadden, , Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184–187.
Knezevich, SR, Garnett, MJ, Pysher, TJ, Beckwith, JB, Grundy, PE, Sorensen, PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998;58:5046–5048.
Rubin, BP, Chen, CJ, Morgan, TW, Xiao, S, Grier, HE, Kozakewich, HP. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:1451–1458
Argani, P, Fritsch, M, Kadkol, SS, Schuster, A, Beckwith, JB, Perlman, EJ. Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 2000;13:29–36.
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24:937–946.
Dubus, P, Coindre, JM, Groppi, A, Jouan, H, Ferrer, J, Cohen, C. The detection of the Tel-TrkC chimeric transcripts is more specific than TrkC immunoreactivity for the diagnosis of congenital fibrosarcoma. J Pathol 2001;193:88–94.
Sheng, WQ, Hisaoka, M, Okamoto, S, Tanaka, A, Meis-Kindblom, JM, Kindblom, LG. Congenital-infantile fibrosarcoma: A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 2001;115:348–355.
Tognon, C, Knezevich, SR, Huntsman, D, Roskelley, CD, Melnyk, N, Mathers, JA. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367–376.
Gallager, RL, Helwig, EB. Neurothekeoma – a benign cutaneous tumor of neural origin. Am J Clin Pathol 1980;74:759–764.
Laskin, WB, Fetsch, JF, Miettinen, M. The neurothekeoma: Immunohistochemical analysis distinguishes the true nerve sheath myxoma from its mimics. Hum Pathol 2000;31:1230–1241.
Barnhill, RL, Dickersin, GR, Nickeleit, V, Bhan, AK, Muhlbauer, JE, Phillips, ME. Studies on the cellular origin of neurothekeoma: clinical, light microscopic, immunohistochemical and ultrastructural observations. J Am Acad Dermatol 1991;25:80–88.
Argenyi, ZB, Boit, PE, Santa Cruz, D, Swanson, PE, Kuzner, H. Nerve sheath myxoma (neurothekeoma) of the skin: light microscopic and immunohistochemical reappraisal of the cellular variant. J Cutan Pathol 1993;20:294–303.
Fetsch, JF, Laskin, WB, Hallman, JR, Lupton, GP, Miettinen, M. Neurothekeoma: an analysis of 178 tumors with detailed immunohistochemical data and long-term patient follow-up information. Am J Surg Pathol 2007;31:1103–1114.
Hornick, JL, Fletcher, CDM. Cellular neurothekeoma: detailed characterization in a series of 133 cases. Am J Surg Pathol 2007;31:329–340.
Page, RN, King, R, Mihm, MC Jr, Googe, PB. Microphthalmia transcription factor and NKI/C3 expression in cellular neurothekeoma. Mod Pathol 2004;17:230–234.
Enzinger, FM, Zhang, R. Plexiform fibrohistiocytic tumor presenting in children and young adults: An analysis of 65 cases. Am J Surg Pathol 1988;12:818–826.
Hollowood, K, Holley, MP, Fletcher, CDM. Plexiform fibrohistiocytic tumour: clinicopathological, immunohistochemical and ultrastructural analysis in favour of a myofibroblastic lesion. Histopathology 1991;19:503–513.
Zelger, B, Weinlich, G, Steiner, H, Zelger, BG, Egarter-Vigl, E. Dermal and subcutaneous variants of plexiform fibrohistiocytic tumor. Am J Surg Pathol 1997;21:235–241.
Remstein, ED, Arndt, CAS, Nascimento, AG. Plexiform fibrohistiocytic tumor: clinicopathologic analysis of 22 cases. Am J Surg Pathol 1999;23:662–670.
Leclerc, S, Hamel-Teillac, D, Oger, P, Brousse, N, Fraitag, S. Plexiform fibrohistiocytic tumor: three unusual cases occurring in infancy. J Cutan Pathol 2005;32:572–576.
Moosavi, C, Jha, P, Fanburg-Smith, JC. An update on plexiform fibrohistiocytic tumor and addition of 66 new cases from the Armed Forces Institute of Pathology, in honor of Franz M. Enzinger, MD. Ann Diagn Pathol 2007;11:313–319.
Redlich, GC, Montgomery, KD, Allgood, GA, Joste, NE. Plexiform fibrohistiocytic tumor with a clonal cytogenetic anomaly. Cancer Genet Cytogenet 1999;108:141–143.
Smith, S, Fletcher, CD, Smith, MA, Gusterson, BA. Cytogenetic analysis of a plexiform fibrohistiocytic tumor. Cancer Genet Cytogenet 1990;48:31–34.
Enzinger, FM. Angiomatoid malignant fibrous histiocytoma: A distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer 1979;44: 2147–2157.
Costa, MJ, Weiss, SW. Angiomatoid malignant fibrous histiocytoma: A follow-up study of 108 cases with evaluation of possible histologic predictors of outcome. Am J Surg Pathol 1990;14:1126–1132.
Leu, HJ, Makek, M. Angiomatoid malignant fibrous histiocytoma. Virchows Arch A Pathol Anat Histopathol 1982;395:99–107.
Fanburg-Smith, JF, Miettinen, M. Angiomatoid “malignant” fibrous histiocytoma: A clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol 1999;30:1336–1343.
Pettinato, G, Manivel, JC, Rosa, G, Petrella, G, Jaszcz, W. Angiomatoid malignant fibrous histiocytoma: cytologic, immunohistochemical, ultrastructural, and flow cytometric study of 20 cases. Mod Pathol 1990;3:479–487.
Chow, LT, Allen, PW, Kumta, SM, Griffith, J, Li, CK, Leung, PC. Angiomatoid malignant fibrous histiocytoma: report of an unusual case with highly aggressive clinical course. J Foot Ankle Surg 1998;37:235–238.
Seo, IS, Frizerra, G, Coates, TD, Mirkin, LD, Cohen, MD. Angiomatoid malignant fibrous histiocytoma with extensive lymphadenopathy simulating Castleman's disease. Pediatric Pathol 1986;6:233–247.
Fletcher, CDM. Angiomatoid “malignant fibrous histiocytoma”: an immunohistochemical study indicative of myoid differentiation. Hum Pathol 1991;22: 563–568.
Smith, MEF, Costa, MJ, Weiss, SW. Evaluation of CD68 and other histiocytic antigens in angiomatoid malignant fibrous histiocytoma. Am J Surg Pathol 1991;15:757–763.
Hasegawa, T, Seki, K, Ono, K, Hirohashi, S. Angiomatoid (malignant) fibrous histiocytoma: a peculiar low-grade tumor showing immunophenotypic heterogeneity and ultrastructural variations. Pathol Int 2000;50:731–738.
Costa, MJ, McGlothlen, L, Pierce, M, Munn, R, Vogt, PJ. Angiomatoid features in fibrohistiocytic sarcomas. Immunohistochemical, ultrastructural, and clinical distinction from vascular neoplasms. Arch Pathol Lab Med 1995;119:1065–1071.
Antonescu, CR, Dal Cin, P, Nafa, K, Teot, , Surti, U, Fletcher, CD. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2007;46:1051–1060.
HallorK,H K,H, Merrtens, F, Jin, Y, Meis-Kindblom, J, Kindblom, LG, Behrendtz, M. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005;44:97–102.
Hallor, KH, Micci, F, Meis-Kindblom, J, Kindblom, LG, Bacchnini, P, Mandahl, N. Fusion genes in angiomatoid fibrous histiocytoma. Cancer Lett 2007;251:158–163.
Waters, BL, Panagopoulos, I, Allen, EF. Genetic characterization of angiomatoid fibrous histiocytoma identifies fusion of the FUS and ATF-1 genes induced by a chromosomal translocation involving bands 12q13 and 16p11. Cancer Genet Cytogenet 2000;121:109–116.
Coffin, CM, Watterson, J, Priest, JR, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859–872.
Coffin, CM, Dehner, LP, Meis-Kindblom, JM. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations. Semin Diagn Pathol 1998;15:102–110.
Coffin, CM, Humphrey, PA, Dehner, LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol 1998;15:85–101.
Neuhauser, TS, Derringer, GA, Thompson, LD, Fanburg-Smith, JC, Aguilera, NS, Andriko, J. Splenic inflammatory myofibroblastic tumor (inflammatory pseudotumor): a clinicopathologic and immunophenotypic study of 12 cases. Arch Pathol Lab Med 2001;125:379–385.
Kutok, JL, Pinkus, GS, Dorfman, DM, Fletcher, CD. Inflammatory pseudotumor of lymph node and spleen: an entity biologically distinct from inflammatory myofibroblastic tumor. Hum Pathol 2001;32:1382–1387.
Chan, JKC. Inflammatory pseudotumor – a family of lesions of diverse nature and etiologies. Adv Anat Pathol 1996;3:156–171.
Ro, JY, el-Naggar, AK, Amin, MB, Sahin, AA, Ordonez, NG, Ayala, AG. Pseudosarcomatous fibromyxoid tumor of the urinary bladder and prostate: immunohistochemical, ultrastructural and DNA flow cytometric analyses of nine cases. Hum Pathol 1993;24:1203–1210.
Albores-Saavedra, J, Manivel, JC, Essenfeld, H, Dehner, LP, Drut, R, Gould, E. Pseudosarcomatous myofibroblastic proliferations in the urinary bladder of children. Cancer 1990;66:1234–1241.
Hojo, H, Newton, WA Jr, Hamoudi, AB, Qualman, SJ, Wakasa, H, Suzuki, S. Pseudosarcomatous myofibroblastic tumor of the urinary bladder in children: a study of 11 cases with review of the literature. An intergroup rhabdomyosarcoma study. Am J Surg Pathol 1995;19:1224–1236.
Harik, LR, Merino, C, Coindre, JM, Amin, MB, Pedeutour, F, Weiss, SW. Pseudosarcomatous myofibroblastic proliferations of the bladder: A clinicopathologic study of 42 cases. Am J Surg Pathol 2006;30:87–794.
Proppe, KH, Scully, RE, Rosai, J. Postoperative spindle cell nodules of genitourinary tract resembling sarcomas. Am J Surg Pathol 1984;8:101–108.
Pettinato, G, Manivel, JC, Rosa, N, Dehner, LP. Inflammatory myofibroblastic tumor (plasma cell granuloma). Clinicopathologic study of 20 cases with immunohistochemical and ultrastructural observations. Am J Clin Pathol 1990;94:538–546.
Yousem, SA, Shaw, H, Cieply, K. Involvement of 2p23 in pulmonary inflammatory pseudotumors. Hum Pathol 2001;32: 428–433.
Meis, JM, Enzinger, FM. Inflammatory fibrosarcoma of the mesentery and retroperitoneum: A tumor closely simulating inflammatory pseudotumor. Am J Surg Pathol 1991;15:1146–1156.
Meis-Kindblom, JM, Kjellstrom, C, Kindblom, LG. Inflammatory fibrosarcoma: update, reappraisal, and perspective on its place in the spectrum of inflammatory myofibroblastic tumors. Semin Diagn Pathol 1998;15:133–143.
Coffin, CM, Hornick, JL, Fletcher, CDM. Inflammatory myofibroblastic tumor: Comparison of clinicopathologic, histologic, and immunohistochemical features including ALK-expression in atypical and aggressive cases. Am J Surg Pathol 2007;31:509–520.
Montgomery, EA, Shuster, DD, Burkart, AL, Esteban, JM, Sgrignoli, A, Elwood, L. Inflammatory myofibroblastic tumors of the urinary tract: a clinicopathologic study of 46 cases, including a malignant example inflammatory fibrosarcoma and a subset associated with high-grade urothelial carcinoma. Am J Surg Pathol 2006;30;1502–1512.
Rabban, JT, Zaloudek, CJ, Shekitka, KM, Tavassoli, FA. Inflammatory myofibroblastic tumor of the uterus: A clinicopathologic study of 6 cases emphasizing distinction from aggressive mesenchymal tumors. Am J Surg Pathol 2005;29:1348–1355.
Wenig, BM, Devaney, K, Bisceglia, M. Inflammatory myofibroblastic tumor of the larynx: A clinicopathologic study of eight cases simulating a malignant spindle cell neoplasm. Cancer 1995;76:2217–2229.
Burke, A, Li, L, Kling, E, Kutys, R, Virmani, R, Miettinen, M. Cardiac inflammatory myofibroblastic tumor: a “benign” neoplasm that may result in syncope, myocardial infarction, and sudden death. Am J Surg Pathol 2007;31:1115–1122.
Jeon, YK, Chang, KH, Suh, YL, Jung, HW, Park, SH. Inflammatory myofibroblastic tumor of the central nervous system: clinicopathologic analysis of 10 cases. J Neuropathol Exp Neurol 2005;64:254–259.
Ramachandra, S, Hollowood, K, Bisceglia, M, Fletcher, CDM. Inflammatory pseudotumor of soft tissues: a clinicopathological and immunohistochemical analysis of 18 cases. Histopathology 1995;27:313–323.
Donner, LR, Trompler, RA, White, RR. Progression of inflammatory myofibroblastic tumor (inflammatory pseudotumor) of soft tissue into sarcoma after several recurrences. Hum Pathol 1996;27:1095–1098.
Chan, JKC, Cheuk, W, Shimizu, M. Anaplastic lymphoma kinase expression in inflammatory pseudotumors. Am J Surg Pathol 2001;25:761–768.
Cook, JR, Dehner, LP, Collins, MH, Ma, Z, Morris, SW, Coffin, CM. Anaplastic lymphoma kinase (ALK) expression in the inflammatory myofibroblastic tumor: A comparative immunohistochemical study. Am J Surg Pathol 2001;25:1364–1371.
Hisaoka, M, Hussong, JW, Brown, M, Perkins, SL, Dehner, LP, Coffin, CM. Comparison of DNA ploidy, histologic and immunohistochemical findings with clinical outcome in inflammatory myofibroblastic tumors. Mod Pathol 1999;12:279–286.
Yamamoto, H, Kohashi, K, Oda, Y, Tamiya, S, Takahashi, Y, Kinoshita, Y. Absence of human herpesvirus-8 and Epstein-Barr virus in inflammatory myofibroblastic tumor with anaplastic large cell lymphoma kinase fusion gene. Pathol Int 2006;56:584–590.
Tavora, F, Shilo, K, Ozbudak, IH, Przybocki, JM, Wang, G, Travis, WD. Absence of human herpesvirus-8 in pulmonary inflammatory myofibroblastic tumor: immunohistochemical and molecular analysis of 20 cases. Mod Pathol 2007;20:995–999.
Snyder, CS, Dell-Aquila, M, Haghighi, P, Baergen, RN, Suh, YK, Yi, ES. Clonal changes in inflammatory pseudotumor of the lung. Cancer 1995;76:1545–1549.
Su, LD, Atayde-Perez, A, Sheldon, S, Fletcher, JA, Weiss, SW. Inflammatory myofibroblastic tumor: cytogenetic evidence supporting clonal origin. Mod Pathol 1998;11:364–368.
Griffin, CA, Hawkins, AL, Dvorak, C, Henkle, C, Ellingham, T, Perlman, EJ. Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 1999;59:2776–2780.
Lawrence, B, Perez-Atayde, A, Hibbard, MK, Rubin, BP, Dal Cin, P, Pinkus, JL. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000;157:377–384.
Bridge, JA, Kanamori, M, Ma, Z, Pickering, D, Hill, DA, Lydiatt, W. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001;159:411–415.
Debelenko, LV, Arthur, DC, Pack, SD, Helman, LJ, Schrump, DS, Tsokos, M. Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 2003;83:1255–1265.
Debiec-Rychter, M, Marynen, P, Hagemeijer, A, Pauwels, P. ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;38:187–190.
Ma, Z, Hill, DA, Collins, MH, Morris, SW, Smegi, J, Zhou, M. Fusion of ALK to the RAN-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2003;37:98–105.
Panagopoulos, I, Nilsson, T, Domanski, HA, Isaksson, M, Lindholm, P, Mertens, F. Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006;118:1181–1186.
Sukov, WR, Cheville, JC, Carlson, AW, Shearer, BM, Piatigorsky, EJ, Gregg, KL. Utility of ALK-1 protein expression and ALK rearrangements in distinguishing inflammatory myofibrolastic tumor from malignant spindle cell lesions of the urinary bladder. Mod Pathol 2007;20:592–603.
Balsaver, AM, Butler, JJ, Martin, RG. Congenital fibrosarcoma. Cancer 1967;20:1607–1616.
Chung, EB, Enzinger, FM. Infantile fibrosarcoma. Cancer 1976;38:729–739.
Soule, EH, Pritchard, DJ. Fibrosarcoma in infants and and children: a review of 110 cases. Cancer 1977;40:1711–1721.
Iwasaki, H, Enjoji, M. Infantile and adult fibrosarcomas of the soft tissues. Acta Pathol Jpn 1979;29:377–388.
Coffin, CM, Jaszcz, W, O'Shea, PA, Dehner, LP. So-called congenital-infantile fibrosarcoma – does it exist and what is it?Pediatr Pathol 1994;14:133–150.
Kodet, R, Stejskal, J, Pilat, D, Kocourkova, M, Smelhaus, V, Eckschlager, T. Congenital-infantile fibrosarcoma: a clinicopathological study of five patients entered on the Prague children's tumor registry. Pathol Res Pract 1996;192:845–853.
Cofer, BR, Vescio, PJ, Wiener, ES. Infantile fibrosarcoma: complete excision is the appropriate treatment. Ann Surg Oncol 1996;3:159–161.
Kynaston, JA, Malcolm, AJ, Craft, AW, Davies, SM, Jones, PH, King, DJ. Chemotherapy in the management of infantile fibrosarcoma. Med Pediatr Oncol 1993;21:488–493.
Nonaka, D, Sun, CCJ. Congenital fibrosarcoma with metastasis in a fetus. Pediatr Develop Pathol 2004;7:187–191.
Salloum, E, Caillaud, JM, Flamant, F, Landman, J, Lemerle, J. Poor prognosis infantile fibrosarcoma with pathologic features of malignant fibrous histiocytoma after local recurrence. Med Pediatr Oncol 1990;18:295–298.
Adam, LR, Davison, EV, Malcolm, AJ, Pearson, AD, Craft, AW. Cytogenetic analysis of a congenital fibrosarcoma. Cancer Genet Cytogenet 1991;52:37–41.
Dal Cin, P, Brock, P, Casteels-Van Daele, M, Wever, I, Damme, B, Berghe, H. Cytogenetic characterization of congenital or infantile fibrosarcoma. Eur J Pediatr 1991;150:579–581.
Sankary, S, Dickman, PS, Wiener, E, Robichaux, W, Swaney, WP, Malone, PS. Consistent numerical chromosome aberrations in congenital fibrosarcoma. Cancer Genet Cytogenet 1993;65:152–156.
Bernstein, R, Zeltzer, PM, Lin, F, Carpenter, PM. Trisomy 11 and other nonrandom trisomies in congenital fibrosarcoma. Cancer Genet Cytogenet 1994;78:82–86.
Knezevich, SR, Mcfadden, , Tao, W, Lim, JF, Sorensen, PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998;18:184–187.
Knezevich, SR, Garnett, MJ, Pysher, TJ, Beckwith, JB, Grundy, PE, Sorensen, PH. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res 1998;58:5046–5048.
Rubin, BP, Chen, CJ, Morgan, TW, Xiao, S, Grier, HE, Kozakewich, HP. Congenital mesoblastic nephroma t(12;15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 1998;153:1451–1458
Argani, P, Fritsch, M, Kadkol, SS, Schuster, A, Beckwith, JB, Perlman, EJ. Detection of the ETV6-NTRK3 chimeric RNA of infantile fibrosarcoma/cellular congenital mesoblastic nephroma in paraffin-embedded tissue: application to challenging pediatric renal stromal tumors. Mod Pathol 2000;13:29–36.
Bourgeois, JM, Knezevich, SR, Mathers, JA, Sorensen, PH. Molecular detection of the ETV6-NTRK3 gene fusion differentiates congenital fibrosarcoma from other childhood spindle cell tumors. Am J Surg Pathol 2000;24:937–946.
Dubus, P, Coindre, JM, Groppi, A, Jouan, H, Ferrer, J, Cohen, C. The detection of the Tel-TrkC chimeric transcripts is more specific than TrkC immunoreactivity for the diagnosis of congenital fibrosarcoma. J Pathol 2001;193:88–94.
Sheng, WQ, Hisaoka, M, Okamoto, S, Tanaka, A, Meis-Kindblom, JM, Kindblom, LG. Congenital-infantile fibrosarcoma: A clinicopathologic study of 10 cases and molecular detection of the ETV6-NTRK3 fusion transcripts using paraffin-embedded tissues. Am J Clin Pathol 2001;115:348–355.
Tognon, C, Knezevich, SR, Huntsman, D, Roskelley, CD, Melnyk, N, Mathers, JA. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2002;2:367–376.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×