Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

18 - Emission and Breakdown Phenomena

Related content

Powered by UNSILO
[1]Dekker, A. J., Solid State Physics. London: Macmillan, 1963.
[2]Gaertner, G. and Koops, W. W. P., ‘Vacuum electron sources and their materials and technologies’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer, pp. 429481, 2008.
[3]Kaye, G. W. C. and Laby, T. H. Tables of Physical and Chemical Constants. Available at: www.kayelaby.npl.co.uk/ (accessed 5 October 2017), 2014.
[4]Sharma, A. et al., ‘Emission poisoning studies on impregnated tungsten dispenser cathode under CO2 and O2 environment’, Applied Surface Science, vol. 40, pp. 97101, 1989.
[5]Kohl, W. H., Handbook of Materials and Techniques for Vacuum Devices. New York: American Institute of Physics, 1995.
[6]Cronin, J. L., ‘Modern dispenser cathodes’, IEE Proceedings I: Solid-State and Electron Devices, vol. 128, pp. 1932, 1981.
[7]Fowler, R. H. and Nordheim, L., ‘Electron emission in intense electric fields’, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173181, 1928.
[8]Brodie, I. and Schwoebel, P. R., ‘Vacuum microelectronic devices’, Proceedings of the IEEE, vol. 82, pp. 10061034, 1994.
[9]Jordan, N. M. et al., ‘Electric field and electron orbits near a triple point’, Journal of Applied Physics, vol. 102, p. 033301, 2007.
[10]Eichmeier, J. A., ‘Radiation sensitive vacuum electronic components and devices’, in Eichmeier, J. A. and Thumm, M., eds, Vacuum Electronics: Components and Devices. Berlin: Springer, pp. 127154, 2008.
[11]Gewartowski, J. W. and Watson, H. A., Principles of Electron Tubes. Princeton, NJ: D. van Nostrand, 1965.
[12]Nation, J. A. et al., ‘Advances in cold cathode physics and technology’, Proceedings of the IEEE, vol. 87, pp. 865889, 1999.
[13]Umstattd, R. J., ‘Advanced electron-beam sources’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 393443, 2005.
[14]Sternglass, E., ‘Theory of secondary electron emission by high-speed ions’, Physical Review, vol. 108, pp. 112, 1957.
[15]Scholtz, J. J. et al., ‘Secondary electron emission properties’, Philips Journal of Research, vol. 50, pp. 375389, 1996.
[16]Rudberg, E., ‘Inelastic scattering of electrons from solids’, Physical Review, vol. 50, pp. 138150, 1936.
[17]Shih, A. et al., ‘Secondary electron emission properties of oxidized beryllium CFA cathodes’, IEEE Transactions on Electron Devices, vol. 41, pp. 24482454, 1994.
[18]Furman, M. A. and Pivi, M. T. F., ‘Probabilistic model for the simulation of secondary electron emission’, Physical Review Special Topics – Accelerators and Beams, vol. 5, p. 124404, 2002.
[19]Chernin, D. et al., ‘A model of secondary emission for use in computer simulation of vacuum electronic devices’, in International Electron Devices Meeting, pp. 773776, 1993.
[20]Seiler, H., ‘Secondary electron emission in the scanning electron microscope’, Journal of Applied Physics, vol. 54, pp. R1–R18, 1983.
[21]Baglin, V. et al., ‘A summary of main experimental results concerning the secondary electron emission of copper’, CERN, Geneva, 2001.
[22]Henrist, B. et al., ‘Secondary electron emission data for the simulation of electron cloud’, in Proc. Mini Workshop on Electron Cloud Simulations for Proton and Positron Beams (ECLOUD’02), pp. 7578, 2002.
[23]Lin, Y. and Joy, D. C., ‘A new examination of secondary electron yield data’, Surface and Interface Analysis, vol. 37, pp. 895900, 2005.
[24]Tolias, P., ‘On secondary electron emission and its semi-empirical description’, Plasma Physics and Controlled Fusion, vol. 56, p. 123002, 2014.
[25]Baglin, V. et al., ‘The secondary electron yield of technical materials and its variation with surface treatments’, in EPAC 2000, Vienna, Austria, pp. 217221, 2000.
[26]Walker, C. et al., ‘The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 eV: a theory/experiment comparison’, Scanning, vol. 30, pp. 365380, 2008.
[27]Walker, C. et al., ‘The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 eV: a theory/experiment comparison’, Scanning, vol. 30, pp. 365380, 2008.
[28]Kanaya, K. et al., ‘Secondary electron emission from insulators’, Journal of Physics D: Applied Physics, vol. 11, p. 2425, 1978.
[29]Dallos, A. et al., ‘Effects of ionized oxygen on primary and secondary emission, and total current of a CFA’, IEEE Transactions on Electron Devices, vol. 34, pp. 12011208, 1987.
[30]Lorkiewicz, J. et al., ‘Surface TiN coating of TESLA couplers at DESY as an antimultipactor remedy’, in The 10th Workshop on RF Superconductivity, 2001.
[31]Michizono, S. et al., ‘Secondary electron emission of sapphire and anti-multipactor coatings at high temperature’, Applied Surface Science, vol. 235, pp. 227230, 2004.
[32]Fuentes, G. et al., ‘Spectroscopic investigations of Cr, CrN and TiCr anti-multipactor coatings grown by cathodic-arc reactive evaporation’, Applied Surface Science, vol. 253, pp. 76277631, 2007.
[33]Pivi, M. et al., ‘Sharp reduction of the secondary electron emission yield from grooved surfaces’, Journal of Applied Physics, vol. 104, p. 104904, 2008.
[34]Curren, A. N. and Jensen, K. A., ‘Secondary electron emission characteristics of ion-textured copper and high-purity isotropic graphite surfaces’, NASA Lewis Research Center, Cleveland OH, July 1984.
[35]Ye, M. et al., ‘Suppression of secondary electron yield by micro-porous array structure’, Journal of Applied Physics, vol. 113, p. 074904, 2013.
[36]Nistor, V. et al., ‘Multipactor suppression by micro-structured gold/silver coatings for space applications’, Applied Surface Science, vol. 315, pp. 445453, 2014.
[37]Xie, A.-G. et al., ‘Maximum secondary electron yield and parameters of secondary electron yield of metals’, Surface Review and Letters, vol. 23, p. 1650039, 2016.
[38]Agarwal, B. K., ‘Variation of secondary emission with primary electron energy’, Proceedings of the Physical Society, vol. 71, p. 851, 1958.
[39]Vaughan, J. R. M., ‘A new formula for secondary emission yield’, IEEE Transactions on Electron Devices, vol. 36, pp. 19631967, 1989.
[40]Dionne, G. F., ‘Effects of secondary electron scattering on secondary emission yield curves’, Journal of Applied Physics, vol. 44, pp. 53615364, 1973.
[41]Dionne, G. F., ‘Origin of secondary-electron-emission yield-curve parameters’, Journal of Applied Physics, vol. 46, pp. 33473351, 1975.
[42]Salehi, M. and Flinn, E., ‘An experimental assessment of proposed universal yield curves for secondary electron emission’, Journal of Physics D: Applied Physics, vol. 13, p. 281, 1980.
[43]Insepov, Z. et al., ‘Comparison of candidate secondary electron emission materials’, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 268, pp. 33153320, 2010.
[44]Vaughan, R., ‘Secondary emission formulas’, IEEE Transactions on Electron Devices, vol. 40, p. 830, 1993.
[45]Shih, A. and Hor, C., ‘Secondary emission properties as a function of the electron incidence angle’, IEEE Transactions on Electron Devices, vol. 40, pp. 824829, 1993.
[46]Yu, S. et al., ‘Secondary electron emission for layered structures’, Journal of Vacuum Science & Technology A, vol. 20, pp. 950952, 2002.
[47]Kitchen, R., RF and Microwave Radiation Safety Handbook. Newnes, 2001.
[48]AMPTEK Inc., Mini-X X-Ray Tube System for XRF, Available at: http://amptek.com/products/mini-x-ray-tube/#5 (accessed 5 October 2017), 25 July 2017.
[49]Hubbell, J. H. and Seltzer, S. M., Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4), 2 March. Available at: http://physics.nist.gov/xaamdi (accessed 5 October 2017), 2004.
[50]Shultis, J. K. and Faw, R. E., ‘Radiation shielding technology’, Health Physics, vol. 88, pp. 587612, 2005.
[51]Forman, R., ‘Update of thermionic cathode progress’, in International Electron Devices Meeting, pp. 387390, 1991.
[52]Hasker, J. et al., ‘Properties and manufacture of top-layer scandate cathodes’, Applied Surface Science, vol. 26, pp. 173195, 1986.
[53]Gaertner, G. and Barratt, D., ‘Life-limiting mechanisms in Ba-oxide, Ba-dispenser and Ba-Scandate cathodes’, in The 5th International Vacuum Electron Sources Conference, pp. 5961, 2004.
[54]Tuck, R., ‘Thermionic cathode surfaces: the state-of-the-art and outstanding problems’, Vacuum, vol. 33, pp. 715721, 1983.
[55]Falce, L. R., ‘Dispenser cathodes: The current state of the technology’, in International Electron Devices Meeting, pp. 448451, 1983.
[56]Shroff, A., ‘Review of dispenser cathodes’, Revue technique-Thomson-CSF, vol. 23, pp. 9471026, 1991.
[57]Harbaugh, W. E., ‘Tungsten, thoriated tungsten and thoria emitters’, in Electron Tube Design. Harrison, NJ: Radio Corporation of America, pp. 9098, 1962.
[58]Yingst, T. E. et al., ‘High-power gridded tubes -1972’, Proceedings of the IEEE, vol. 61, pp. 357381, 1973.
[59]Zhang, M. et al., ‘Influence of plasma spraying on the performance of oxide cathodes’, IEEE Transactions on Electron Devices, vol. 58, pp. 21432148, 2011.
[60]Longo, R. T. et al., ‘Dispenser cathode life prediction model’, in International Electron Devices Meeting, pp. 318321, 1984.
[61]Longo, R., ‘Physics of thermionic dispenser cathode aging’, Journal of Applied Physics, vol. 94, pp. 69666975, 2003.
[62]Raju, R. S., ‘Studies on W-Re mixed-matrix cathodes’, IEEE Transactions on Electron Devices, vol. 56, pp. 786793, 2009.
[63]Spindt, C. A. et al., ‘Field-emitter arrays for vacuum microelectronics’, IEEE Transactions on Electron Devices, vol. 38, pp. 23552363, 1991.
[64]Spindt, C., ‘A brief history vacuum nanoelectronics, the IVNC, and the present status of the Spindt cathode’, in 25th International Vacuum Nanoelectronics Conference, pp. 12, 2012.
[65]Whaley, D. R. et al., ‘Application of field emitter arrays to microwave power amplifiers’, IEEE Transactions on Plasma Science, vol. 28, pp. 727747, 2000.
[66]Whaley, D. R. et al., ‘Experimental demonstration of an emission-gated traveling-wave tube amplifier’, IEEE Transactions on Plasma Science, vol. 30, pp. 9981008, 2002.
[67]Whaley, D. R. et al., ‘100 W operation of a cold cathode TWT’, IEEE Transactions on Electron Devices, vol. 56, pp. 896905, 2009.
[68]Whaley, D. et al., ‘High average power field emitter cathode and testbed for X/Ku-band cold cathode TWT’, in IEEE International Vacuum Electronics Conference (IVEC), pp. 12, 2013.
[69]Spindt, C. et al., ‘11.1: A reliable improved Spindt cathode design for high currents’, in IEEE International Vacuum Electronics Conference (IVEC), pp. 201202, 2010.
[70]Kilpatrick, W. D., ‘Criterion for vacuum sparking designed to include both RF and DC’, Rev. Sci. Instrum., vol. 28, pp. 824826, 1957.
[71]Peter, W. et al., ‘Criteria for vacuum breakdown in RF cavities’, IEEE Transactions on Nuclear Science, vol. 30, pp. 34543456, 1983.
[72]Gilmour, A. S., Jr., Microwave Tubes. Dedham, MA: Artech House, 1986.
[73]Faillon, G., ‘Technical and industrial overview of RF and microwave tubes for fusion’, Fusion Engineering and Design, vol. 46, pp. 371381, 1999.
[74]Döbert, S., ‘Gradient limitations for high-frequency accelerators’, presented at the LINAC 2004, Lübeck, Germany, 2004.
[75]Braun, H. H. et al., ‘Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz’, Physical Review Letters, vol. 90, p. 224801, 2003.
[76]Farrall, G. A., ‘Vacuum arcs and switching’, Proceedings of the IEEE, vol. 61, pp. 11131136, 1973.
[77]Beilis, I. I., ‘State of the theory of vacuum arcs’, IEEE Transactions on Plasma Science, vol. 29, pp. 657670, 2001.
[78]Cobine, J. D., Gaseous Conductors. New York: Dover, 1941.
[79]Denholm, A. S., ‘High voltage technology’, IEEE Transactions on Nuclear Science, vol. 12, pp. 780791, June 1965.
[80]Xiao, D., ‘Fundamental Theory of Townsend Discharge’, in Gas Discharge and Gas Insulation. Shanghai: Shanghai Jiao Tong University Press, pp. 4788, 2016.
[81]Townsend, J., Electrons in Gases. London; New York: Hutchinson’s Scientific and Technical Publications, 1948.
[82]Husain, E. and Nema, R. S., ‘Analysis of Paschen curves for air, N2 and SF6 using the Townsend breakdown equation’, IEEE Transactions on Electrical Insulation, vol. EI-17, pp. 350353, 1982.
[83]Kuffel, J. et al., High Voltage Engineering Fundamentals. Amsterdam: Newnes, 2000.
[84]Arora, R. and Mosch, W., High Voltage and Electrical Insulation Engineering, vol. 69. John Wiley & Sons, 2011.
[85]Miller, H. C., ‘Surface flashover of insulators’, IEEE Transactions on Electrical Insulation, vol. 24, pp. 765786, 1989.
[86]Vaughan, J. R. M., ‘Multipactor’, IEEE Transactions on Electron Devices, vol. 35, pp. 11721180, 1988.
[87]Kishek, R. et al., ‘Multipactor discharge on metals and dielectrics: historical review and recent theories’, Physics of Plasmas (1994 – present), vol. 5, pp. 21202126, 1998.
[88]Riyopoulos, S., ‘Multipactor saturation due to space-charge-induced debunching’, Physics of Plasmas (1994–present), vol. 4, pp. 14481462, 1997.
[89]Hill, C. and Carter, R. G., ‘Investigation of possible multipactor discharge in a klystron input cavity’, in 2006 IEEE International Vacuum Electronics Conference Held Jointly with 2006 IEEE International Vacuum Electron Sources, Monterey, CA, pp. 8182, 2006.
[90]Vaughan, J. R. M., ‘Observations of multipactor in magnetrons’, IEEE Transactions on Electron Devices, vol. 15, pp. 883889, 1968.
[91]Geng, R. L. et al., ‘Suppression of multipacting in rectangular coupler waveguides’, Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, vol. 508, pp. 227238, 11 August 2003.
[92]Geng, R. L. et al., ‘Dynamical aspects of multipacting induced discharge in a rectangular waveguide’, Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, vol. 538, pp. 189205, 11 February 2005.
[93]Ylä-Oijala, P., ‘Analysis of electron multipacting in coaxial lines with traveling and mixed waves’, Deutsche Elektronen-Synchrotron DESY, MHF-SL Group, 1997.
[94]Somersalo, E. et al., ‘Analysis of multipacting in coaxial lines’, in Proceedings of the 1995 Particle Accelerator Conference, pp. 15001502, 1995.
[95]Vaughan, J. R. M., ‘Some high-power window failures’, IRE Transactions on Electron Devices, vol. 8, pp. 302308, 1961.
[96]Yamaguchi, S. et al., ‘Trajectory simulation of multipactoring electrons in an S-band pillbox RF window’, IEEE Transactions on Nuclear Science, vol. 39, pp. 278282, 1992.
[97]Woode, A. and Petit, J., ‘Investigations into multipactor breakdown in satellite microwave payloads’, ESA Journal, vol. 14, pp. 467478, 1990.
[98]Chang, C. et al., ‘Review of recent theories and experiments for improving high-power microwave window breakdown thresholds’, Physics of Plasmas, vol. 18, p. 055702, 2011.
[99]Shemelin, V., ‘Generalized phase stability in multipacting’, Physical Review Special Topics-Accelerators and Beams, vol. 14, p. 092002, 2011.
[100]Hatch, A. J. and Williams, H. B., ‘The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown’, Journal of Applied Physics, vol. 25, pp. 417423, 1954.
[101]Hatch, A. J. and Williams, H. B., ‘Multipacting modes of high-frequency gaseous breakdown’, Physical Review, vol. 112, pp. 681685, 1958.
[102]Riyopoulos, S. et al., ‘Effect of random secondary delay times and emission velocities in electron multipactors’, IEEE Transactions on Electron Devices, vol. 44, pp. 489497, 1997.
[103]Dexter, A. and Seviour, R., ‘Rapid generation of multipactor charts by numerical solution of the phase equation’, Journal of Physics D: Applied Physics, vol. 38, p. 1383, 2005.
[104]Seviour, R., ‘The role of elastic and inelastic electron reflection in multipactor discharges’, IEEE Transactions on Electron Devices, vol. 52, pp. 19271930, 2005.
[105]Riyopoulos, S., ‘Higher-order, asymmetric orbit multipactors’, Physics of Plasmas (1994–present), vol. 14, p. 112101, 2007.
[106]Semenov, V. E. et al., ‘Importance of reflection of low-energy electrons on multipactor susceptibility diagrams for narrow gaps’, IEEE Transactions on Plasma Science, vol. 37, pp. 17741781, 2009.
[107]Proch, D. et al., ‘Measurement of multipacting currents of metal surfaces in RF fields’, in Proceedings of the 1995 Particle Accelerator Conference, pp. 17761778, 1995.
[108]Semenov, V. et al., ‘Multipactor in rectangular waveguides’, Physics of Plasmas (1994–present), vol. 14, p. 033501, 2007.
[109]Woo, R., ‘Multipacting discharges between coaxial electrodes’, Journal of Applied Physics, vol. 39, pp. 15281533, 1968.
[110]Udiljak, R. et al., ‘Multipactor in a coaxial transmission line. I. Analytical study’, Physics of Plasmas (1994–present), vol. 14, p. 033508, 2007.
[111]Riyopoulos, S. et al., ‘Theory of electron multipactor in crossed fields’, Physics of Plasmas (1994–present), vol. 2, pp. 31943213, 1995.
[112]Semenov, V. et al., ‘Multipactor in a coaxial transmission line. II. Particle-in-cell simulations’, Physics of Plasmas (1994–present), vol. 14, p. 033509, 2007.
[113]Burt, G. et al., ‘Benchmarking simulations of multipactor in rectangular waveguides using CST-particle studio’, in SRF 2009, Berlin, pp. 321–325, 2009.
[114]Lingwood, C. et al., ‘Phase space analysis of multipactor saturation in rectangular waveguide’, Physics of Plasmas (1994–present), vol. 19, p. 032106, 2012.
[115]You, J. W. et al., ‘Highly efficient and adaptive numerical scheme to analyze multipactor in waveguide devices’, IEEE Transactions on Electron Devices, vol. 62, pp. 13271333, 2015.