Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T00:51:20.638Z Has data issue: false hasContentIssue false

7 - Bacillus thuringiensis (Bt) Toxins: Microbial Insecticides

Published online by Cambridge University Press:  05 June 2012

Alexander N. Glazer
Affiliation:
University of California, Berkeley
Hiroshi Nikaido
Affiliation:
University of California, Berkeley
Get access

Summary

The concerted effect of the exponentially increasing costs of insecticide development, the dwindling rate of commercialization of new materials, and the demonstration of cross or multiple resistance to new classes of insecticides almost before they are fully commercialized makes pest resistance the greatest single problem facing applied entomology. The only reasonable hope of delaying or avoiding pest resistance lies in integrated pest management programs that decrease the frequency and intensity of genetic selection by reduced reliance upon insecticides and alternatively rely upon multiple interventions in insect population control by natural enemies, insect diseases, cultural manipulations, and host-plant resistance.

–Metcalf, R. L. (1980). Changing role of insecticides in crop protection. Annual Review Entomology, 25, 219–256.

The competition for crops between humans and insects is as old as agriculture, but chemical warfare against insects has a much shorter history. Farmers began to use chemical substances to control pests in the mid-1800s. Not surprisingly, the development of insecticides paralleled the development of chemistry: early insecticides were in the main inorganic and organic arsenic compounds, followed by organochlorine compounds, organophosphates, carbamates, pyrethroids, and formamidines, many of which are in use today. In 2001, global sales of chemical insecticides included more than 1.23 million pounds of active ingredients and reached about $9.1 billion a year.

There are disadvantages to relying exclusively on chemical pesticides. Foremost is that widespread use of single-chemical compounds confers a selective evolutionary advantage on the progeny of pests that have acquired resistance to the substances.

Type
Chapter
Information
Microbial Biotechnology
Fundamentals of Applied Microbiology
, pp. 234 - 266
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×