Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T12:34:36.940Z Has data issue: false hasContentIssue false

21 - Prevention of surgical site infections

Published online by Cambridge University Press:  12 January 2010

Hien H. Nguyen
Affiliation:
Division of Infectious Diseases, University of California, Davis School of Medicine, Sacramento, CA
Stuart H. Cohen
Affiliation:
Division of Infectious Diseases, University of California, Davis School of Medicine Sacramento, CA
Michael F. Lubin
Affiliation:
Emory University, Atlanta
Robert B. Smith
Affiliation:
Emory University, Atlanta
Thomas F. Dodson
Affiliation:
Emory University, Atlanta
Nathan O. Spell
Affiliation:
Emory University, Atlanta
H. Kenneth Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Introduction

Prevention of surgical infections has helped to revolutionize surgery from a practice that had been plagued by frequent infection and death into the discipline it is today. As the development of antimicrobial prophylaxis and the prevention of postoperative infection have progressed, the development of more invasive, technical procedures has also evolved.

However, infections related to surgery continue to remain a problem. Over 27 million surgeries are performed in US hospitals each year with average infection rates over the past decade ranging from 0.14% for clean uncomplicated eye surgery to well over 17% for high-risk cardiothoracic surgeries, with an overall infection rate of approximately 2.6% from 1986–1996. Data from the Centers for Disease Control and Prevention (CDC), through the National Nosocomial Infections Surveillance (NNIS) System, indicate surgical site infections (SSIs) are the third most common infection reported, accounting for 14%–16% of all nosocomial infections. SSIs are the most common nosocomial infection in surgical patients. In turn, these complications result in longer and costlier hospital stays. In 1995, it was estimated that nosocomial infections accounted for approximately $4.5 billion of the healthcare budget, with surgical wound infections the most costly. In fact, when readmissions are accounted, Kirkland and colleagues estimated in 1999 that the total excess hospitalization and direct costs attributable to one surgical site infection were 12 additional hospital days and $5038, respectively.

For some procedures, SSIs not only impact cost but also quality of life.

Type
Chapter
Information
Medical Management of the Surgical Patient
A Textbook of Perioperative Medicine
, pp. 285 - 306
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Centers for Disease Control and Prevention, National Center for Health Statistics. Vital and Health Statistics, Detailed Diagnoses and Procedures, National Hospital Discharge Survey, 1994. Vol 207. Hyattsville, Maryland: DHHS Publication; 1997.
Centers for Disease Control and Prevention. National nosocomial infections surveillance (NNIS) report, data summary from October 1986–April 1998, issued June 1998. Am. J. Infect. Control 1998; 26: 522–533.
Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., & Jarvis, W. R. The Hospital Infection Control Practices Advisory Committee. Guideline for Prevention and Surgical Site Infection, 1999. Infect. Cont. Hosp. Epidemiol. 1999; 20: 247–278.CrossRefGoogle Scholar
Emori, T. G. & Gaynes, R. P.An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 1993; 6: 428–442.CrossRefGoogle ScholarPubMed
Akalin, H. E.Surgical prophylaxis: the evolution of guidelines in a era of cost containment. J. Hosp. Infect. 2002; 50(Suppl A): S3–S7.CrossRefGoogle Scholar
Kirkland, K. B., Briggs, J. P., Trivette, S. L., Wilkinson, W. E., & Sexton, D. J.The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect. Cont. Hosp. Epidemiol. 1999; 20: 725–730.CrossRefGoogle ScholarPubMed
Whitehouse, J. D., Friedman, N. D., Kirkland, K. B., Richardson, W. J., & Sexton, D. J.The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect. Cont. Hosp. Epidemiol. 2002; 23: 183–189.CrossRefGoogle Scholar
Poulsen, K. B., Wachmann, C. H., Bremmelgaard, A.et al. Survival of patients with surgical wound infection: A case-control study of common surgical interventions. Br. J. Surg. 1995; 82: 208–209.CrossRefGoogle ScholarPubMed
Astagneau, P., Rioux, C., Golliot, F., Brucker, G., for the INCISO Network Study Group. Morbidity and mortality associated with surgical site infections: results from the 1997–1999 INCISO surveillance. J. Hosp. Infect. 2001; 48: 267–274.CrossRefGoogle ScholarPubMed
Houang, E. T. & Ahmet, Z.Intraoperative wound contamination during abdominal hysterectomy. J. Hosp. Infect. 1991; 19: 181–189.CrossRefGoogle ScholarPubMed
McGowan, J. E. Jr.Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev. Infect. Dis. 1983; 5: 1033–1048.CrossRefGoogle ScholarPubMed
Schaberg, D. R., Culver, D. H., & Gaynes, R. P.Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 1991; 91(3B): 72S–75S.CrossRefGoogle ScholarPubMed
Jarvis, W. R.Epidemiology of nosocomial fungal infections, with emphasis of Candida species. Clin. Infect. Dis. 1995; 20: 1526–1530.CrossRefGoogle ScholarPubMed
Bhavnani, S. M., Drake, J. A., Forrest, A.et al. Diagn. Microbiol. Infect. Dis. 2000; 36: 145–158.CrossRef
Bonten, M. J., Slaughter, S., Ambergen, A. W.et al. The role of colonization pressure in the spread of vancomycin-resistant entercocci: an important infection control variable. Arch. Intern. Med. 1998; 158: 1127–1132.CrossRefGoogle Scholar
Garner, J. S.CDC guidelines for the prevention and control of nosocomial infections: guideline for prevention of surgical wound infections, 1985. Am. J. Infect. Control. 1986; 14: 71.CrossRefGoogle Scholar
Ad Hoc Committee of the Committee on Trauma, National Research Council Division of Medical Sciences. Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors. Ann. Surg. 1964; 160(Suppl. 2): 1–132.
Page, C. P., Bohnen, J. M. A., Fletcher, J. R.et al. Antimicrobial prophylaxis for surgical wounds: guidelines for clinical care. Arch. Surg. 1993; 128: 79–88.CrossRefGoogle Scholar
Haley, R. W., Culver, D. H., Morgan, W. M., White, J. W., Emori, T. G., & Hooton, T. M.Identifying patients at high risk of surgical wound infection. Am. J. Epidemiol. 1985; 121: 206–215.CrossRefGoogle ScholarPubMed
Culver, D. H., Horan, T. C., Gaynes, R. P.and the National Nosocomial Infections Surveillance Systems (NNIS): Surgical wound infection rates by wound class, operation and risk index in U.S. Hospitals. Am. J. Med. 1991; 91(Suppl 3B): 152S–157S.CrossRefGoogle Scholar
Sasse, A., Mertens, R., Sion, J. P.et al. Surgical prophylaxis in Belgian hospitals: estimate of costs and potential savings. J. Antimicrob. Chemother. 1998; 41: 267–272.CrossRefGoogle ScholarPubMed
Kernodle, D. S., Barg, N. L., & Kaiser, A. B.Low-level colonization of hospitalized patients with methicillin-resistant coagulase-negative staphylococci and emergence of the organisms during surgical antimicrobial prophylaxis. Antimicrob. Agents Chemother. 1988; 32: 202–208.CrossRefGoogle ScholarPubMed
Kreisel, D., Savel, T. G., Silver, A. L.et al. Surgical antibiotic prophylaxis and Clostridium difficile toxin positivity. Arch. Surg. 1995; 130: 989–993.CrossRefGoogle ScholarPubMed
Yee, J., Dixon, C. M., McLean, P. H.et al. Clostridium difficile disease in a department of surgery: The significance of prophylactic antibiotics. Arch. Surg. 1991; 126: 241–246.CrossRefGoogle Scholar
McGowan, J. E. Jr.Cost and benefit of perioperative antimicrobial prophylaxis: methods for economic analysis. Rev. Infect. Dis. 1991; 13(Suppl 10): S879–S889.CrossRefGoogle ScholarPubMed
Knight, R., Charbonneau, P., Ratzer, E., Zeren, F., Haun, W., & Clark, J.Prophylactic antibiotics are not indicated in clean general surgery cases. Am. J. Surg. 2001; 182: 682–686.CrossRefGoogle Scholar
Finland, M.Antibacterial agents: uses and abuses in treatment and prophylaxis. Rhode Island Med. J. 1960; 43: 499–520.Google ScholarPubMed
Hopkins, C. C.Antibiotic prophylaxis in clean surgery: peripheral vascular surgery, noncardiovascular thoracic surgery, herniorrhaphy, and mastectomy. Rev. Infect. Dis. 1991; 13(Suppl. 10): S869–S873.CrossRefGoogle ScholarPubMed
Da Costa, A., Kirkorian, G., Cucherat, M.et al. Antibiotic prophylaxis for permanent pacemaker implantation: a meta-analysis. Circulation 1998; 97: 1796–1801.CrossRefGoogle ScholarPubMed
Platt, R., Zucker, J. R., Zaleznik, D. F.et al. Prophylaxis against wound infection following herniorrhaphy or breast surgery. J. Infect. Dis. 1992; 166: 556–560.CrossRefGoogle ScholarPubMed
Perl, T. M., Cullen, J. J., Wenzel, R. P.et al. Intranasal mupirocin to prevent postoperative Staphylococcus aureus infections. N. Engl. J. Med. 2002; 346: 1871–1877.CrossRefGoogle ScholarPubMed
Cioffi, G. A., Terezhalmy, G. T., & Taybos, G. M.Total joint replacement: a consideration for antimicrobial prophylaxis. Oral Surg. Oral Med. Oral Pathol. 1988; 66: 124–129.CrossRefGoogle ScholarPubMed
Heggeness, M. H., Esses, S. I., Errico, T., & Yuan, H. A.Late infection of spinal instrumentation by hematogenous seeding. Spine 1993; 18: 492–496.CrossRefGoogle ScholarPubMed
Mont, M. A., Waldman, B., Banerjee, C., Pacheco, I. H., & Hunderford, D. S.Multiple irrigation, debridement, and retention of components in infected total knee arthroplasty. J. Arthroplasty. 1997; 12: 426–433.CrossRefGoogle ScholarPubMed
Ozuna, R. M. & Delamarter, R. B.Pyogenic vertebral osteomyelitis and post-surgical disc space infections. Orthop. Clin. North Am. 1996; 27: 87–94.Google Scholar
Schmalzried, T. P., Amstutz, H. C., Au, M. K., & Dorey, F. J.Etiology of deep sepsis in total hip arthroplasty. The significance of hematogenous and recurrent infections. Clin. Orthop. 1992; 280: 200–207.Google Scholar
Giamarellou, H. & Antoniadou, A.Epidemiology, diagnosis and therapy of fungal infections in surgery. Infect. Cont. Hosp. Epidemiol. 1996; 17: 558–564.CrossRefGoogle ScholarPubMed
Pottinger, J., Burns, S., & Manske, C.Bacterial carriage by artificial versus natural nails. Am. J. Infect. Control. 1989; 17: 340–344.CrossRefGoogle ScholarPubMed
McNeil, S. A., Foster, C. L., Hedderwick, S. A., & Kauffman, C. A.Effect of hand cleansing with antimicrobial soap or alcohol-based gel on microbial colonization of artificial fingernails worn by health care workers. Clin. Infect. Dis. 2001; 32: 367–372.CrossRefGoogle ScholarPubMed
Passaro, D. J., Waring, L., Armstron, R.et al. Postoperative Serratia marcescens wound infections traced to an out-of-hospital source. J. Infect. Dis. 1997; 175: 992–995.CrossRefGoogle Scholar
Bennett, S. N., McNeil, M. M., Bland, L. A.et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N. Engl. J. Med. 1995; 333: 147–154.CrossRefGoogle ScholarPubMed
Polk, H. C. Jr., Trachtenberg, L., & Finn, M. P.Antibiotic activity in surgical incisions: The basis for prophylaxis in selected operations. J. Am. Med. Assoc. 1980; 244: 1353–1354.CrossRefGoogle ScholarPubMed
Scher, K. S.Studies on the duration of antibiotic administration for surgical prophylaxis. Am. Surg. 1997; 63: 59–62.Google ScholarPubMed
Fraise, A. P.Guidelines for the control of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1998; 42: 287–289.CrossRefGoogle ScholarPubMed
Lalla, F.Surgical prophylaxis in practice. J. Hosp. Infect. 2002; 50(Suppl A): S9–S12.CrossRefGoogle ScholarPubMed
Spelman, D., Harrington, G., Russo, P., & Wesselingh, S.Clinical, microbiological and economic benefit of a change in antibiotic prophylaxis for cardiac surgery. Infect. Cont. Hosp. Epidemiol. 2002; 23: 402–404.CrossRefGoogle ScholarPubMed
Archer, G. L. & Armstrong, B. C.Alteration of staphylococcal flora in cardiac patients receiving antibiotic prophylaxis. J. Infect. Dis. 1983; 147: 642–649.CrossRefGoogle ScholarPubMed
Anonymous. Antimicrobial prophylaxis in surgery. Med. Letter Drugs Ther. 1999; 39(1012): 97–102.
Burke, J. F.The effective period of preventive antibiotic action in experimental incisions and dermal lesions. Surgery 1961; 50: 161–168.Google ScholarPubMed
Classen, D. C.Evans, R. S., Pestotnik, S. L.et al. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N. Engl. J. Med. 1992; 326: 281–286.CrossRefGoogle ScholarPubMed
Burnett, K. M.Scott, M. G., Kearney, P. M., Humphreys, W. G., & McMillen, R. M.The identification of barriers preventing the successful implementation of a surgical prophylaxis protocol. Pharm. World Sci. 2002; 24: 182–187.CrossRefGoogle ScholarPubMed
Dipiro, J. T., Cheung, R. P., Bowden, T. A., & Mansberger, J. A.Single dose systemic antibiotic prophylaxis of surgical wound infections. Am. J. Surg. 1986; 152: 552–559.CrossRefGoogle ScholarPubMed
Elliott, J. P., Reeman, R. K., & Dorchester, W.Short versus long course of prophylactic antibiotics in cesarean section. Am. J. Obstet. Gynecol. 1982; 143: 740–744.CrossRefGoogle Scholar
Gatell, J. M., Garcia, S., Lozano, L.et al. Perioperative cefamandole prophylaxis against infections. J. Bone Joint Surg. 1987; 8: 1189–1193.CrossRefGoogle Scholar
Hall, J. C., Christiansen, K. J., Goodman, M.et al. Duration of antimicrobial prophylaxis in vascular surgery. Am. J. Surg. 1998; 175: 87–90.CrossRefGoogle ScholarPubMed
Farber, B. F., Kaiser, D. L., & Wenzel, R. P.Relation between surgical volume and incidence of postoperative wound infections. N. Engl. J. Med. 1981; 305: 200–204.CrossRefGoogle Scholar
Birkmeyer, J. D., Siewers, A. E., Finlayson, E.et al. Hospital volume and surgical mortality in the United States. N. Engl. J. Med. 2002; 346: 1128–1137.CrossRefGoogle ScholarPubMed
Burke, J. P.Maximizing appropriate antibiotic prophylaxis for surgical patients: an update from LDS Hospital, Salt Lake City. Clin. Infect. Dis. 2001; 33(Suppl 2): S78–S83.CrossRefGoogle ScholarPubMed
Halasz, N. A.Wound infection and topical antibiotics: the surgeon's dilemma. Arch. Surg. 1977; 112: 1240–1244.CrossRefGoogle ScholarPubMed
Belt, H., Neut, D., Schenk, W.et al. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. Acta Orthop. Scand. 2001; 72: 557–571.CrossRefGoogle ScholarPubMed
Espenhaug, B., Engesaeter, L. B., Vollset, S. E.et al. Antibiotic prophylactics in total hip arthroplasty. J. Bone Joint Surg. (Br.) 1997; 79: 590–595.CrossRefGoogle Scholar
Nelson, C. L., Evans, R. P., Blaha, J. D.et al. A comparison of gentamicin-impregnated polymethylmethcrylate bead implantation to conventional parenteral antibiotic therapy in infected total hip and knee arthroplasty. Clin. Orthop. 1993; 295: 96–101.Google Scholar
Dirschl, D. R. & Wilson, F. C.Topical antibiotic irrigation in the prophylaxis of operative wound infections in orthopedic surgery. Orthop. Clin. North Am. 1991; 22: 419–426.Google ScholarPubMed
Lewis, R. T.Oral versus systemic antibiotic prophylaxis in elective colon surgery: a randomized study and meta-analysis send a message from the 1990s. Can. J. Surg. 2002; 45: 173–180.Google Scholar
Calvet, H. M. & Yoshikawa, T. T.Infections in diabetics. Infect. Dis. Clin North Am. 2001; 15: 407–421.CrossRefGoogle Scholar
Golden, S. H., Pert-Vigilance, C., Kao, W. H., & Brancati, F. L.Perioperative glycemic control and the risk of infectious complications in a cohort of adults with diabetes. Diabetes Care 1999; 22: 1408–1414.CrossRefGoogle Scholar
Furnary, A. P., Zerr, K. J., Grunkemeier, G. L., & Starr, A.Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures. Ann. Thorac. Surg. 1999; 67: 352–362.CrossRefGoogle ScholarPubMed
Kurz, A., Sessler, D. L., & Lenhardt, R.Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N. Engl. J. Med. 1996; 334: 1209–1215.CrossRefGoogle ScholarPubMed
Grief, R., Akca, O., Horn, E. P., Kurz, A., & Sessler, D. I.Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N. Engl. J. Med. 2000; 342: 161–167.CrossRefGoogle Scholar
Cruse, P. J. & Foord, R.The epidemiology of wound infection: a 10 year prospective study of 62,939 wounds. Surg. Clin. North Am. 1980; 60: 27–40.CrossRefGoogle ScholarPubMed
Nichols, R. L. Prophylaxis for surgical infections. In Gorbach, S. L., Barlett, J. G., & Blacklow, N. R. Infectious Diseases. Chapter 44. 2nd edn. 1998; 471.
Edwards, L. D.The epidemiology of 2056 remote site infections and 1966 surgical wound infections occurring in 1865 patients: A four year study of 40,923 operations at Rush-Presbyterian-St. Luke's Hospital, Chicago. Ann. Surg. 1976; 184: 758–766.CrossRefGoogle ScholarPubMed
Valentive, R. J., Weigelt, J. A., Dryer, D., & Rodgers, C.Effect of remote infections on clean wound infection rates. Am. J. Infect. Control 1986; 14: 64–67.Google Scholar
Dajani, A. S., Taubert, K. A., Wilson, W.et al. Prevention of bacterial endocarditis. recommendations by the American Heart Association. J. Am. Med. Assoc. 1997; 277: 1794–1801.CrossRefGoogle ScholarPubMed
Strom, B. L., Abrutyn, E., Berlin, J. A.et al. Dental and cardiac risk factors for infective endocarditis. Ann. Int. Med. 1998; 129: 761–769.CrossRefGoogle ScholarPubMed
American Dental Association, American Academy of Orthopedic Surgeons. Antibiotic prophylaxis for dental patients with total joint replacements. J. Am. Dent. Assoc. 1997; 128: 1004–1007.CrossRef
Lockhart, P. B., Brennan, T., Fox, P. C.et al. Decision-making on the use of antimicrobial prophylaxis for dental procedures: a survey of infectious disease consultants and review. Clin. Infect. Dis. 2002; 34: 1621–1626.CrossRefGoogle ScholarPubMed
Lord, R. V. N.Anorectal surgery in patients infected with human immunodeficiency virus. Ann. Surg. 1997; 226: 92–99.CrossRefGoogle ScholarPubMed
Grubert, T. A., Reindell, D., Kastner, R.et al. Rates of postoperative complications among human immunodeficiency virus – infected women who have undergone obstetric and gynecologic surgical procedures. Clin. Infect. Dis. 2002; 34: 822–830.CrossRefGoogle ScholarPubMed
Paiement, G. D., Hymes, R. A., LaDouceur, M. S., Gosselin, R. A., & Green, H. D.Postoperative infections in asymptomatic HIV-seropositive orthopedic trauma patients. J. Trauma 1994; 37: 545–550.CrossRefGoogle ScholarPubMed
Emparan, C., Iturburu, I. M., Portugal, V.et al. Infective complications after minor operations in patients infected with HIV: role of CD4 lymphocytes in prognosis. Eur. J. Surg. 1995; 161: 721–730.Google ScholarPubMed
Hill, C., Mazas, F., Flamant, R., & Evrard, J.Prophylactic cefazolin versus placebo in total hip replacement. Lancet 1981; 1: 795–796.CrossRefGoogle ScholarPubMed
Lidwell, O. M., Lowbury, E. J. L., Whyte, W.et al. Infection and sepsis after operations for total hip or knee-joint replacement: influence of ultraclean air, prophylactic antibiotics and other factors. J. Hyg. (Lond.). 1984; 93: 505–529.CrossRefGoogle ScholarPubMed
Hanssen, A. D. & Osmon, D. R.Prevention of deep wound infection after total hip arthroplasty: the role of prophylactic antibiotics and clean air technology. Semin. Arthroplasty 1994; 5: 114–121.Google ScholarPubMed
Sluis, Gernaat-van A. J., Hoogenboom-Verdegall, A. M. M., Edixhoven, P. J.et al. Prophylactic mupirocin could reduce orthopedic wound infections. Acta Orthop. Scand. 1998; 69: 412–414.CrossRefGoogle Scholar
Kalmeijer, M. D., Coertjens, H., Nieuwland-Bollen, P. M.et al. Surgical site infections in orthopedic surgery: the effect of mupirocin nasal ointment in a double-blind, randomized, placebo-controlled study. Clin. Infect. Dis. 2002; 35: 353–358.CrossRefGoogle Scholar
Winfree, C. H., Baker, K. Z., & Connolly, E. S.Perioperative normothermia and surgical-wound infection. N. Engl. J. Med. 1996; 335: 749–750.Google ScholarPubMed
Fekety, F. R., Cluff, L. E., Sabiston, D. C.et al. A study of antibiotic prophylaxis in cardiac surgery. J. Thorac. Cardiovasc. Surg. 1969; 57: 757–763.Google ScholarPubMed
Fong, I. W., Baker, C. B., & McKee, D. C.The value of prophylactic antibiotics in aortacoronary bypass operations. J. Thorac. Cardiovasc. Surg. 1979; 78: 908–913.Google Scholar
Zanetti, G., Giardina, R., & Platt, R.Intraoperative redosing of cefazolin and risk for surgical site infection in cardiac surgery. Emerg. Infect. Dis. 2001; 7: 828–831.CrossRefGoogle ScholarPubMed
Maher, K. O., VanDerElzen, K., Bove, E. L.et al. A retrospective review of three antibiotic prophylaxis regimens for pediatric cardiac surgical patients. Ann. Thorac. Surg. 2002; 74: 1195–1200.CrossRefGoogle ScholarPubMed
Szilagyi, D. E., Smith, R. F., Elliott, J. P., & Vrandecic, M. P.Infection in arterial reconstruction with synthetic grafts. Ann. Surg. 1972; 176: 321–333.CrossRefGoogle ScholarPubMed
Kaiser, A. B., Clayson, K. R., Mulherin, J. L. et al. Antibiotic prophylaxis in vascular surgery. Ann. Surg. 1978; 188: 283–289.CrossRefGoogle ScholarPubMed
Hasselgren, P., Ivarsson, L., Risberg, B., & Seeman, T.Effects of prophylactic antibiotics in vascular surgery. Ann. Surg. 1984; 200: 86–92.Google ScholarPubMed
Bennion, R. S., Hiatt, J. R., Williams, R. A., & Wilson, S. E.A randomized, prospective study of perioperative antimicrobial prophylaxis for vascular access surgery. J. Cardiovasc. Surg. 1985; 26: 270–274.Google ScholarPubMed
Sonne-Holm, S., Boeckstyns, M., Menck, H.et al. Prophylactic antibiotics in amputation of the lower extremity for ischemia. J. Bone Joint Surg. 1985; 67A: 800–803.CrossRefGoogle Scholar
Johnson, J. T., & Wagner, R. L.Infection following uncontaminated head and neck surgery. Arch. Otolaryngol. Head Neck Surg. 1987; 113: 368–369.CrossRefGoogle Scholar
Carrau, R. L., Byzakis, J., Wagner, R. L., & Johnson, J. T.Role of prophylactic antibiotics in uncontaminated neck dissections. Arch. Otolaryngol. Head Neck Surg. 1991; 117: 194–195.CrossRefGoogle ScholarPubMed
Slattery, W. H., Stringer, S. P., & Cassisi, N. J.Prophylactic antibiotic use in clean, uncontaminated neck dissection. Laryngoscope 1995; 105: 244–246.CrossRefGoogle ScholarPubMed
Becker, G. D. & Parell, G. J.Cefazolin prophylaxis in head and neck cancer surgery. Ann. Otol. Rhinol. Laryngol. 1979; 88: 183–186.CrossRefGoogle ScholarPubMed
Coskun, H., Erisen, L., & Basut, O.Factors affecting wound infection rates in head and neck surgery. Otolaryngol. Head Neck Surg. 2000; 123: 328–333.CrossRefGoogle ScholarPubMed
Tabet, J.-C. & Johnson, J. T.Wound infection in head and neck surgery: prophylaxis, etiology, and management. J. Otolaryngol. 1990; 19: 197–200.Google ScholarPubMed
Rubin, J., Johnson, J. T., Wagner, R. L., & Yu, V. L.Bacteriologic analysis of wound infection following major head and neck surgery. Arch. Otolaryngol. Head Neck Surg. 1988; 114: 969–972.CrossRefGoogle ScholarPubMed
Robbins, K. T., Byers, R. M., Cole, R.et al. Wound prophylaxis with metronidazole in head and neck surgical oncology. Layrngoscope 1988; 98: 803–806.Google ScholarPubMed
Piccart, M., Dor, P., & Klastersky, J.Antimicrobial prophylaxis of infections in head and neck cancer surgery. Scand. J. Infect. Dis.Suppl. 1983; 39: 92–96.Google ScholarPubMed
Johnson, J. T., Yu, V. L., Myers, E. N., & Wagner, R. L.An assessment of the need for gram-negative coverage in antibiotic prophylaxis for oncological head and neck surgery. J. Infect. Dis. 1987; 155: 331–333.CrossRefGoogle ScholarPubMed
Righi, M., Manfredi, R., & Farneti, G.Short-term versus long-term antimicrobial prophylaxis in oncologic head and neck surgery. Head Neck. 1996; 18: 399–404.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Johnson, J. T., Schuller, D. E., Silver, F.et al. Antibiotic prophylaxis in high-risk head and neck surgery: one day vs. five day therapy. Otolaryngol. Head Neck Surg. 1986; 95: 554–557.CrossRefGoogle ScholarPubMed
LoCicero, J. & Nichols, R. J.Sepsis after gastroduodenal operations: relationship to gastric acid, motility, and endogenous microflora. South Med. J. 1980; 73: 878–880.Google ScholarPubMed
Lewis, R. T., Allan, C. M., Goodall, R. G.et al. Discriminate use of antibiotic prophylaxis in gastroduodenal surgery. Am. J. Surg. 1979; 138: 640–643.CrossRefGoogle ScholarPubMed
Nichols, R. L., Webb, W. R., Jones, J. W.et al. Efficacy of antibiotic prophylaxis in high risk gastroduodenal operations. Am. J. Surg. 1982; 143: 94–98.CrossRefGoogle ScholarPubMed
Keighley, M. R. B., Flinn, R., & Alexander-Williams, J.Multivariate analysis of clinical and operative findings associated with biliary sepsis. Br. J. Surg. 1976; 63: 528–531.CrossRefGoogle Scholar
Keighley, M. R. B., Baddeley, R. M., Burdon, D. W.et al. A controlled trial of parenteral prophylactic gentamicin therapy in biliary surgery. Br. J. Surg. 1975; 62: 275–279.CrossRefGoogle ScholarPubMed
Ulualp, K. & Condon, R. E.Antibiotic prophylaxis for scheduled operative procedures. Infect. Dis. Clin. North Am. 1992; 6: 613–625.Google ScholarPubMed
Clarke, J. S., Condon, R. E., Barlett, J. G.et al. Preoperative oral antibiotics reduce septic complications of colon operations: results of prospective, randomized, double-blind clinical study. Ann. Surg. 1977; 186: 251–259.CrossRefGoogle ScholarPubMed
Song, F. & Glenny, A. M.Antimicrobial prophylaxis in colorectal surgery: a systematic review of randomized controlled trials. Health Technol. Assessm. 1998; 2: 1–110.Google Scholar
Kaiser, A. B., Herrington, J. L. Jr., Jacobs, J. K.et al. Cefoxitin versus erythromycin, neomycin, and cefazolin in colorectal operations. Importance of the duration of the surgical procedure. Ann. Surg. 1983; 198: 525–530.CrossRefGoogle ScholarPubMed
Coppa, G. F. & Eng, K.Factors involved in antibiotic selection in elective colon and rectal surgery. Surgery 1988; 104: 853–858.Google ScholarPubMed
Nichols, R. L.Surgical antibiotic prophylaxis. Med. Clin. North Am. 1995; 79: 509–522.CrossRefGoogle ScholarPubMed
Antonelli, W., Borgani, A., Machella, C.et al. Comparison of two systemic antibiotics for the prevention of complications in elective colorectal surgery. Ital. J. Surg. Sci. 1985; 15: 255–258.Google ScholarPubMed
Chodak, G. W. & Plaut, M. E.Systemic antibiotics for prophylaxis in urologic surgery: a critical review. J. Urol. 1979; 121: 695–699.CrossRefGoogle ScholarPubMed
Grabe, M.Perioperative antibiotic prophylaxis in urology. Curr. Opin. Urol. 2001; 11: 81–85.CrossRefGoogle ScholarPubMed
Childs, S. J.Genitourinary surgical prophylaxis. Infect. Surg. 1983; 2: 701–710.Google Scholar
Kraklau, D. M. & Wolf, J. S. Jr.Review of antibiotic prophylaxis recommendations for office-based urologic procedures. Tech. Urol. 1999; 5: 123–128.Google ScholarPubMed
Scherz, H. C. & Parsons, C. L.Prophylactic antibiotics in urology. Urol. Clin. North Am. 1987; 14: 265–271.Google ScholarPubMed
Ferguson, K. H., McNeil, J. J., & Morey, A. F.Mechanical and antibiotic bowel preparation for urinary diversion surgery. J. Urol. 2002; 167: 2352–2356.CrossRefGoogle ScholarPubMed
Webb, N. R. & Woo, H. H.Antibiotic prophylaxis for prostate biopsy. B. J. U. International 2002; 89: 824–828.CrossRefGoogle ScholarPubMed
Shapiro, M., Schoenbaum, S. C., Tager, I. B.et al. Benefit–cost analysis of antimicrobial prophylaxis in abdominal and vaginal hysterectomy. J. Am. Med. Assoc. 1983; 249: 1290–94.CrossRefGoogle ScholarPubMed
Chongsomchai, C., Lumbiganon, P., Thinkhamrop, J.et al. Placebo-controlled, double-blind, randomized study of prophylactic antibiotics in elective abdominal hysterectomy. J. Hosp. Infect. 2002; 52: 302–306.CrossRefGoogle ScholarPubMed
Killian, C. A., Graffunder, E. M., Vinciguerra, T. J., & Venezia, R. A.Risk factors for surgical-site infections following cesarean section. Infect. Control Hosp. Epidemiol. 2001; 22: 613–617.CrossRefGoogle ScholarPubMed
Smaill, F. & Hofmeyr, G. J.Antibiotic prophylaxis for cesarean section (Cochrane Review). In The Cochrane Library. 2002; Issue 4.Google Scholar
Fabian, T. C.Infection in penetrating abdominal trauma: risk factors and preventive antibiotics. Am. Surg. 2002; 68: 29–35.Google ScholarPubMed
Kirton, O. C., O'Neill, P. A., Kestner, M., & Tortella, B. J.Perioperative antibiotic use in high-risk penetrating hollow viscus injury: a prospective randomized, double-blind, placebo-control trial of 24 hours vesus 5 days. J. Trauma 2000; 49: 822–832.CrossRefGoogle Scholar
Fabian, T. C., Croce, M. A., Payne, L. W.et al. Duration of antibiotic therapy for penetrating abdominal trauma; a prospective trial. Surgery 1992; 112: 788–795.Google ScholarPubMed
Nichols, R. L., Smith, J. W., Klein, D. B.et al. Risk of infection after penetrating abdominal trauma. N. Engl. J. Med. 1984; 311: 1065–1070.CrossRefGoogle ScholarPubMed
Dellinger, E. P.Antibiotic prophylaxis in trauma. Rev. Infect. Dis. 1991; 13(Suppl 10): S847–S857.CrossRefGoogle ScholarPubMed
Nguyen, T. T., Gilpin, D. A., Meyer, N. A., & Herndon, D. N.Current treatment of severely burned patients. Ann. Surg. 1996; 223: 14–25.CrossRefGoogle ScholarPubMed
American College of Surgeons, Committee on Surgical Infections. Manual on Control of Infection in Surgical Patients, 2nd edn. Philadelphia: J. B. Lippincott, 1984.
Durtschi, M. B., Orgain, C., Counts, G. W., & Heimbach, D. M.A prospective study of prophylactic penicillin in acutely burned hospitalized patients. J. Trauma. 1982; 22: 11–14.CrossRefGoogle ScholarPubMed
Mousa, H. A.Aerobic, anaerobic, and fungal burn wound infections. J. Hosp. Infect. 1997; 37: 317–323.CrossRefGoogle ScholarPubMed
Edwards-Jones, V. & Shawcross, S. G.Toxic shock syndrome in the burned patient. Br. J. Biomed. Sci. 1997; 54: 110–117.Google ScholarPubMed
Patel, R. & Paya, C. V.Infections in solid organ transplant recipients. Clin. Microbiol. Rev. 1997; 10: 86–124.Google ScholarPubMed
Rubin, R. H. & Tolkoff-Rubin, N. E.Antimicrobial strategies in the care of organ transplant recipients. Antimicrob. Agents Chemother. 1993; 37: 619–624.CrossRefGoogle ScholarPubMed
Wagener, M. M. & Yu, V. L.Bacteremia in transplant recipients: a prospective study of demographics, etiologic agents, risk factors and outcomes. Am. J. Infect. Control. 1992; 20: 239–247.CrossRefGoogle ScholarPubMed
Tillegard, A.Renal transplant and wound infection: the value of prophylactic antibiotic treatment. Scand. J. Urol. Nephrol. 1984; 18: 215–221.CrossRefGoogle ScholarPubMed
Townsend, T. R., Rudolf, L. E., & Westervelt, F. B. Jr.Prophylactic antibiotic therapy with cefamandole and tobramycin for patients undergoing renal transplantation. Infect. Control 1980; 1: 93–96.CrossRefGoogle ScholarPubMed
Soave, R.Prophylaxis strategies for solid-organ transplantation. Clin. Infect. Dis. 2001; 33(Suppl 1): S26–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×