Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T15:36:24.549Z Has data issue: false hasContentIssue false

27 - Micromechanics of Crystallographic Slip

Published online by Cambridge University Press:  06 July 2010

Robert Asaro
Affiliation:
University of California, San Diego
Vlado Lubarda
Affiliation:
University of California, San Diego
Get access

Summary

Fundamental concepts concerning the micromechanics of crystalline plasticity are reviewed in this chapter. An overview of deformation mechanisms is given for crystalline materials that possess grain sizes that are said to be “traditional,” i.e., larger than about 2 µm in diameter. Some brief comments are made about the trends in deformation mechanisms when the grain sizes are much below this range (nanograins).

Early Observations

In a series of articles published between 1898 and 1900 Ewing and Rosenhain summarized their metallographic studies of deformed polycrystalline metals. The conclusion they reached concerning the mechanisms of plastic deformation provided a remarkably accurate picture of crystalline plasticity. Figure 27.1 is a schematic diagram, including some surrounding text, taken from their 1900 overview article. Figure 27.2 is one of their many excellent optical micrographs of deformed polycrystalline metals; the particular micrograph in Fig. 27.2 is of polycrystalline lead. They identified the steps a-e in Fig. 27.1 as “slip-steps” caused by the emergence of “slip bands,” which formed along crystallographic planes, at the specimen surfaces (thereby coining these two well-known phrases).

Traces of the crystalline slip planes were indicated by the dashed lines. The line labeled C was indicated by them to be a grain boundary separating two grains; the grains, they concluded, were crystals with a more or less homogeneous crystallographic orientation. Slip steps corresponding to the diagram of Fig. 27.1 are clearly visible in the micrograph of Fig. 27.2.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×