Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T10:19:51.910Z Has data issue: false hasContentIssue false

10 - Measurement of Active Nanoelectronic Devices

Published online by Cambridge University Press:  21 September 2017

T. Mitch Wallis
Affiliation:
National Institute of Standards and Technology, Boulder
Pavel Kabos
Affiliation:
National Institute of Standards and Technology, Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schroter, M., Claus, M., Sakalas, P., Haferlach, M., and Wang, D., “Carbon Nanotube FET Technology for Radio-Frequency Electronics: State-of-the-Art Overview,” IEEE Journal of the Electron Devices Society 1 (2013) pp. 920.Google Scholar
Burke, P. J., “AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistor,” Solid State Electronics 48 (2004) pp. 19811986.Google Scholar
Durkop, T., Getty, S. A., Cobas, E., and Fuhrer, M. S., “Extraordinary Mobility in Semiconducting Carbon Nanotubes,” Nano Letters 4 (2004) pp. 3539.Google Scholar
Le Louarn, A., Kapche, F., Bethoux, J.-M., Happy, H., Dambrine, G., Derycke, V., Chenevier, P., Izard, N., Goffman, M. F., and Bourgoin, J.-P., “Intrinsic Current Gain Cutoff Frequency of 30 GHz with Carbon Nanotube Transistors,” Applied Physics Letters 90 (2007) art. no. 233108.CrossRefGoogle Scholar
Nougaret, L., Happy, H., Dambrine, G., Derycke, V., Bourgoin, J. P., Green, A. A., and Hersam, M. C., “80 GHz Field-Effect Transistors Produced Using High Purity Semiconducting Single-Walled Carbon Nanotubes,” Applied Physics Letters 94 (2009) art. no. 243505.Google Scholar
Schroter, M., Lolev, P., Wang, D., Lin, S., Samarakone, N., Bronikowksi, M., Yu, Z., Sampat, P., Syams, P., and McKernan, S., “A 4” Wafer Photostepper-Based Carbon Nanotube FET Technology for RF Applications,” 2011 IEEE MMT-S International Microwave Symposium Digest (MTT) (2011) pp. 14.Google Scholar
Rutherglen, C. and Burke, P., “Nanoelectromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes,” Small 5 (2009) pp. 884906.Google Scholar
Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I., and Firsov, A., “Electric Field Effect in Atomically Thin Carbon Films,” Science 306 (2004) pp. 666669.CrossRefGoogle ScholarPubMed
Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P., “Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene,” Nature 438 (2005) pp. 201204.CrossRefGoogle ScholarPubMed
Lin, Y.-M., Dimitrakopoulos, C., Jenkins, K. A., Farmer, D. B., Chiu, H. Y., Grill, A., and Avouris, P., “100-GHz Transistors from Wafer-Scale Epitaxial Graphene,” Science 327 (2010) p. 662.CrossRefGoogle ScholarPubMed
Moon, J. S., Curtis, D., Zehnder, D., Kim, S., Gaskill, D. K., Jernigan, G. G., Myers-Ward, R. L., Eddy, C. R., Campbell, P. M., Lee, K.-M., and Asbeck, P., “Low-Phase Noise Graphene FETs in Ambipolar RF Applications,” IEEE Electron Device Letters 32 (2011) pp. 270272.Google Scholar
Britnell, L., Gorbachev, R. V., Jalil, R., Belle, B. D., Schedin, F., Katsnelson, M. I., Eaves, L., Morozov, S. G., Peres, N. M. R., Leist, J., Geim, A. K., Novoselov, K. S., and Ponomarenko, L. A., “Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures,” Science 335 (2012) pp. 947950.Google Scholar
Moon, J. S., Seo, H.-C., Stratan, F., Antcliffe, M., Schmitz, A., Ross, R. S., Kiselev, A. A., Wheeler, V. D., Nyakiti, L. O., Gaskill, D. K., Lee, K.-M., and Asbeck, P. M., “Lateral Graphene Heterostructure Field-Effect Transistor,” IEEE Electron Device Letters 34 (2013) pp. 11901192.Google Scholar
Hua Wang, Q., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. and Strano, M. S., “Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides,” Nature Nanotechnology 7 (2012) pp. 699712.Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A., “Single Layer MoS2 Transistors,” Nature Nanotechnology 6 (2011) pp. 147150.CrossRefGoogle ScholarPubMed
Aaen, P., Pla, J. A., and Wood, J., Modeling and Characterization of RF and Microwave Power FETs (Cambridge University Press, 2007).Google Scholar
Fukai, H., “Determination of the Basic Device Parameters of a GaAs MESFET,” Bell System Technical Journal 58 (1979) pp. 771797.Google Scholar
Curtice, W. R. and Camisa, R. L., “Self-Consistent GaAs FET Models for Amplifier Design and Device Diagnostics,” IEEE Transactions on Microwave Theory and Techniques 32 (1984) pp. 15731578.Google Scholar
Gu, D., Wallis, T. M., Blanchard, P., Lim, S.-H., Imtiaz, A., Bertness, K. A., Sanford, N. A., and Kabos, P., “De-embedding Parasitic Elements of GaN Nanowire Metal Semiconductor Field Effect Transistors by Use of Microwave Measurements,” Applied Physics Letters 98 (2011) art. no. 223109.Google Scholar
Gu, D., Wallis, T. M., Kabos, P., Blanchard, P., Bertness, K. A., and Sanford, N. A., “Microwave Measurements and Systematic Circuit-Model Extraction of Nanowire Metal Semiconductor Field-Effect Transistors,” Measurement Science and Technology 23 (2012) art. no. 105602.Google Scholar
Blanchard, P. T., Bertness, K. A., Harvey, T. E., Mansfield, L. M., Sanders, A. W., and Sanford, N. A., “MESFETs Made from Individual Nanowires,” IEEE Transactions on Nanotechnology 7 (2008) pp. 760765.CrossRefGoogle Scholar
Smith, P. A., Norquist, C. D., Jackson, T. N., Mayer, T. S., Martin, B. R., Mbindyo, J., and Mallouk, T. E., “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Applied Physics Letters 77 (2000) pp. 13991401.CrossRefGoogle Scholar
Marks, R. B., “A Multiline Method of Network Analyzer Calibration,” IEEE Transactions on Microwave Theory and Techniques 39 (1991) pp. 12051215.Google Scholar
Hong, S. W., Banks, T., and Rogers, J. A., “Improved Density in Aligned Arrays of Single-Walled Carbon Nanotubes by Sequential Chemical Vapor Deposition on Quartz,” Advanced Materials 22 (2010) pp. 18261830.CrossRefGoogle ScholarPubMed
Brady, G. J., Joo, Y., Roy, S. S., Gopalan, P., and Arnold, M. S., “High Performance Transistors via Aligned Polyfluorene-Sorted Carbon Nanotubes,” Applied Physics Letters 105 (2014) art. no. 083107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×