Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T09:05:43.074Z Has data issue: false hasContentIssue false

13 - Dynamics of Nanoscale Magnetic Systems

Published online by Cambridge University Press:  21 September 2017

T. Mitch Wallis
Affiliation:
National Institute of Standards and Technology, Boulder
Pavel Kabos
Affiliation:
National Institute of Standards and Technology, Boulder
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Landau, L. D. and Lifschitz, E. M., “On the Theory of Dispersion of Magnetic Permeability in Ferromagnetic Bodies,” Physikalische Zeitschrift der Sowjetunion 8 (1935) p. 153.Google Scholar
Gilbert, T. A., “A Phenomenological Theory of Damping in Ferromagnetic Materials,” IEEE Transactions on Magnetics, 40, No. 6 (2004) pp. 3443–3449 (originally “Equation of Motion of Magnetization,” Armour Research Foundation Technical Report 11 (1955)).Google Scholar
Bloch, F., “Nuclear Induction,” Physical Review 70 (1946) pp. 460473.CrossRefGoogle Scholar
Bloembergen, N., “Magnetic Resonance in Ferrites,” Proceedings of the IRE 44 (1956) p. 1259.CrossRefGoogle Scholar
Kittel, C., “On the Theory of Ferromagnetic Resonance Absorption,” Physical Review 73 (1948) pp. 155161.Google Scholar
Srinivasan, G. and Slavin, A., High Frequency Processes in Magnetic Materials (World Scientific Publishing, 1995).CrossRefGoogle Scholar
Stancil, D. D., Theory of Magnetostatic Waves (Springer, 1993).CrossRefGoogle Scholar
Kabos, P. and Stalmachov, V.S., Magnetostatic Waves and Their Applications (Springer, 1994).Google Scholar
Rado, G. T. and Suhl, H., Magnetism (Academic Press, 1963).Google Scholar
Lax, B. and Button, K.J., Microwave Ferrites and Ferrimagnetism (McGraw Hill, 1962).Google Scholar
Gurevich, A. G. and Melkov, G. A., Magnetization Oscillations and Waves (CRC Press, 1996).Google Scholar
Kalarickal, S. S., Krivosik, P., Wu, M., Patton, C. E., Schneider, M. L., Kabos, P., Silva, T.J. and Nibarger, J. P., “Ferromagnetic Resonance Linewidth in Metallic Thin Films: Comparison of Measurement Methods,” Journal of Applied Physics 99 (2006) art. no. 093909.Google Scholar
Neudeckera, I., Woltersdorf, G., Heinrich, B., Okuno, T., Gubbiotti, G., and Back, C. H., “Comparison of Frequency, Field, and Time Domain Ferromagnetic Resonance Methods,” Journal of Magnetism and Magnetic Materials 307 (2006) pp. 148156.CrossRefGoogle Scholar
Einstein, A. and de Haas, W. J.Experimental Proof of the Existence of Ampère’s Molecular Currents,” Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings, 18 (1915) pp. 696711 (in English) and Verh. Dtsch. Phys. Ges. 17 (1915) p. 152 (in German).Google Scholar
Barnett, S. J., “Magnetization by Rotation,” Physical Review 6 (1915) pp. 239270.CrossRefGoogle Scholar
Wallis, T. M., Moreland, J., and Kabos, P., “Einstein-de Haas Effect in NiFe Film Deposited on a Microcantilever,” Applied Physics Letters 89 (2006) art. no. 122502.CrossRefGoogle Scholar
Kittel, C., “On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances,” Physical Review 76 (1949) pp. 743748.CrossRefGoogle Scholar
Jaafar, R., Chudnovsky, E. M., and Garanin, D. A., “Dynamics of the Einstein–de Haas Effect: Application to a Magnetic Cantilever,” Physical Review B 79 (2009) art. no. 104410.Google Scholar
Jander, A., Moreland, J., and Kabos, P., “Angular Momentum and Energy Transferred through Ferromagnetic Resonance,” Applied Physics Letters 78 (2001) pp. 23482350.Google Scholar
Jander, A., Moreland, J., and Kabos, P., “Micromechanical Detectors for Local Field Measurements Based on Ferromagnetic Resonance,” Journal of Applied Physics 89 (2001) pp. 70867090.CrossRefGoogle Scholar
Lee, S., Lee, Y. C., Wallis, T. M., Moreland, J., and Kabos, P., “Near-field Imaging of High Frequency Magnetic Fields with Calorimetric Cantilever Probes,” Journal of Applied Physics 99 (2006) art. no. 08H306.Google Scholar
Lim, S.-H., Imtiaz, A., Wallis, T. M., Russek, S., Kabos, P., Cai, Liufei, and Chudnovsky, E M., “Magneto-mechanical Investigation of Spin Dynamics in Magnetic Multilayers,” Europhysics Letters 105 (2014) art. no. 37009.Google Scholar
Kasai, S., Nakatani, Y., Kobayashi, K., Kohno, H., and Ono, T.Current-Driven Resonant Excitation of Magnetic Vortices,” Physical Review Letters 97 (2006) art. no. 107204.CrossRefGoogle ScholarPubMed
Lin, W., Cucchiara, J., Berthelot, C., Hauet, T., Henry, Y., Katine, J. A., Fullerton, E. E., and Mangin, S., “Magnetic Susceptibility Measurements as a Probe of Spin Transfer Driven Magnetization Dynamics,” Applied Physics Letters 96 (2010) art. no. 252503.Google Scholar
Mecking, N., Gui, Y. S., and Hu, C.-M., “Microwave Photovoltage and Photoresistance Effects in Ferromagnetic Microstrips,” Physical Review B 76 (2007) art. no. 224430.CrossRefGoogle Scholar
Zhang, H., Hoffmann, A., Divan, R., and Wang, P., “Direct-Current Effects on Magnetization Reversal Properties of Submicron Size Permalloy Patterns for Radio-Frequency Devices,” Applied Physics Letters 95 (2009) art. no. 232503.CrossRefGoogle Scholar
Silva, T. J., Lee, C. S., Crawford, T. M., and Rogers, C. T., “Inductive Measurement of Ultrafast Magnetization Dynamics in Thin Film Permalloy,” Journal of Applied Physics 85 (1999) pp. 78497862.CrossRefGoogle Scholar
Kos, A. B., Silva, T. J., and Kabos, P.. “Pulsed Inductive Microwave Magnetometer,” Review of Scientific Instruments 73 (2002) pp. 35633569.Google Scholar
Lim, S-H., Wallis, T. M., Imtiaz, A., Gu, D., Krivosik, P., and Kabos, P., “Comparison of Electrical Techniques for Magnetization Dynamics Measurements in Micro/Nanoscale Structures,” Journal of Applied Physics 109 (2011) art. no. 07D317.CrossRefGoogle Scholar
Tsymbal, E. Y. and Pettifor, D. G., “Perspectives of Giant Magnetoresistance,” Solid State Physics 56 (2001) p. 113.Google Scholar
Smith, N. and Arnett, P., “White-Noise Magnetization Fluctuations in Magnetoresistive Heads,” Applied Physics Letters 78 (2001) pp.14481450.Google Scholar
Russek, S. E. and Kaka, Sh., “Time and Frequency Domain Measurements of Ferromagnetic Resonance in Small Spin-Valve,” IEEE Transactions on Magnetics 36 (2000) pp. 25602562.Google Scholar
Kaka, S., Nibarger, J. P., Russek, S., Stutzke, N. A. and Burkett, S. L., “High-Frequency Measurements of Spin-Valve Films and Devices,” Journal of Applied Physics 93 (2003) pp. 75397544.CrossRefGoogle Scholar
Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., and Ralph, D. C.Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars,” Physical Review Letters 84 (2000) pp. 31493152.Google Scholar
Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N., and Buhrman, R. A., “Current-Induced Switching of Domains in Magnetic Multilayer Devices,” Science 285 (1999) pp. 867870.CrossRefGoogle ScholarPubMed
Slonczewski, J. C., “Current-Driven Excitation in Magnetic Multilayers,” Journal of Magnetism and Magnetic Materials 159 (1996) pp. L1L7.CrossRefGoogle Scholar
Berger, L., “Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current,” Physical Review B 54 (1996) pp. 93539358.CrossRefGoogle ScholarPubMed
Tsoi, M., “Excitation of a Magnetic Multilayer by an Electric Current,” Physical Review Letters 80 (1998) pp. 42814284.CrossRefGoogle Scholar
Kiselev, S. I., Sankey, J. C., Krivorotov, I. N., Emley, N. C., Schoelkopf, R. J., Buhrman, R. A. and Ralph, D. C., “Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current,” Nature 425 (2003) pp. 380383.Google Scholar
Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E., and Silva, T. J., “Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts,” Physical Review Letters 92 (2004) art. no. 027201.CrossRefGoogle Scholar
Sankey, J. C., Braganca, P. M., Garcia, A. G. F., Krivorotov, I. N., Buhrman, R. A., and Ralph, D. C., “Spin-Transfer-Driven Ferromagnetic Resonance of Individual Nanomagnets,” Physical Review Letters 96 (2006) art. no. 227601.Google Scholar
Harder, M., Cao, Z. X., Gui, Y. S., Fan, X. L., and Hu, C.-M., “Analysis of the Line Shape of Electrically Detected Ferromagnetic Resonance,” Physical Review B 84 (2011) art. no. 054423.CrossRefGoogle Scholar
Tserkovnyak, Y., Brataas, A., and Bauer, G. E. W., “Enhanced Gilbert Damping in Thin Ferromagnetic Films,” Physical Review Letters 88 (2002) art. no. 117601.CrossRefGoogle ScholarPubMed
Mizukami, S., Ando, Y., and Miyazaki, T., “Effect of Spin Diffusion on Gilbert Damping for a Very Thin Permalloy Layer in Cu/permalloy/Cu/Pt Films,” Physical Review B 66 (2002) art. no. 104413.Google Scholar
Valenzuela, S. O. and Tinkham, M., “Direct Electronic Measurement of the Spin Hall Effect,” Nature 442 (2006) pp. 176179.CrossRefGoogle ScholarPubMed
Saitoh, E., Ueda, M., Miyajima, H. and Tatara, G., “Conversion of Spin Current into Charge Current at Room Temperature: Inverse Spin-Hall Effect,” Applied Physics Letters 88 (2006) art. no. 182509.CrossRefGoogle Scholar
Sidles, J. A., “Noninductive Detection of Single-Proton Magnetic Resonance,” Applied Physics Letters 58 (1991) pp. 28542856.Google Scholar
Rugar, D., Yannoni, C. S., and Sidles, J. A., “Mechanical Detection of Magnetic Resonance,” Nature 360 (1992) pp. 563566.Google Scholar
Rugar, D., Zuger, O., Hoen, S., Yannoni, C. S., Vieth, H. M., and Kendrick, R. D., “Force Detection of Nuclear Magnetic Resonance,” Science 264 (1994) pp. 15601563.Google Scholar
Rugar, D., Budakian, R., Mamin, H. J., and Chui, B. W., “Single Spin Detection by Magnetic Resonance Force Microscopy,” Nature 430 (2004) pp. 329332.Google Scholar
Obukhov, Yu., Pelekhov, D. V., Kim, J., Banerjee, P., Martin, I., Nazaretski, E., Movshovich, R., An, S., Gramila, T. J., Batra, S., and Hammel, P. C., “Local Ferromagnetic Resonance Imaging with Magnetic Resonance Force Microscopy,” Physical Review Letters 100 (2008) art. no. 197601.Google Scholar
Midzo, M. M., Wigen, P. E., Pelekhov, D., Chen, W., Hammel, P. C., and Roukes, M. L., “Imaging Mechanisms of Force Detected FMR Microscopy,” Journal of Applied Physics 87 (2000) pp. 64936495.Google Scholar
Meckenstock, R., “Microwave Spectroscopy Based on Scanning Thermal Microscopy: Resolution in the Nanometer Scale,” Review of Scientific Instruments 79 (2008) art. no. 041101.Google Scholar
Meckenstock, R. and Pelzl, J., “Investigation of Anisotropy Effects on Interlayer Exchange Coupling by Locally Resolved Photothermally Modulated Ferromagnetic Resonance,” Journal of Applied Physics 81 (1997) pp. 52595261.CrossRefGoogle Scholar
Meckenstock, R., Spodding, D., Dietzel, D., Pelzl, J. and Bucher, J., “Scanning Thermal Microwave Resonance Microscopy of Ni Nanodots,” Review of Scientific Instruments 74 (2003) pp. 789791.Google Scholar
Nonnenmacher, M. and Wickramasinghe, H. K., “Scanning Probe Microscopy of Thermal Conductivity and Subsurface Properties,” Applied Physics Letters 61 (1992) pp. 168170.CrossRefGoogle Scholar
Tovee, P., Pumarol, M., Zeze, D., Kjoller, Kevin, and Kolosov, O., “Nanoscale Spatial Resolution Probes for Scanning Thermal Microscopy of Solid State Materials,” Journal of Applied Physics 112 (2012) art. no. 114317.Google Scholar
Pelzl, J. and Meckenstock, R., “Photothermal Investigation of Local and Depth Dependent Magnetic Properties,” Journal of Physics: Conference Series 214 (2010) art. no. 012002.Google Scholar
Frait, Z., Kambersky, V., Malek, Z., and Ondris, M., “Local Variations of Uniaxial Anisotropy in Thin Films,” Czech. Journal of Physics B 10 (1960) p. 616.CrossRefGoogle Scholar
Soohoo, R. F., “A Microwave Magnetic Microscope,” Journal of Applied Physics 33 (1962) pp. 12761277.Google Scholar
Agrawal, V., Neuzil, P., and van der Weide, D. W., “A Microfabricated Tip for Simultaneous Acquisition of Sample Topography and High-Frequency Magnetic Field,” Applied Physics Letters 71 (1997) pp. 23432345.CrossRefGoogle Scholar
Rosner, B. T. and van der Weide, D. W., “High-Frequency Near-Field Microscopy,” Review of Scientific Instruments 73 (1997) pp. 25052525.Google Scholar
Wang, R. and Tabib-Azar, M., “Noncontact Evanescent Microwave Magnetic Dipole Probe Imaging of Ferromagnets,” IEEE Transactions on Magnetics 43 (2007) pp. 31653170.CrossRefGoogle Scholar
Mircea, D. I. and Clinton, T. W., “Near-Field Microwave Probe for Local Ferromagnetic Resonance Characterization,” Applied Physics Letters 90 (2007) art. no. 142504.Google Scholar
Wiesendanger, R., Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, 1994).Google Scholar
Schmidt, R., Lazo, C., Holscher, H., Pi, U. H., Caciuc, V., Schwarz, A., Wiesendanger, R., and Heinze, S., “Probing the Magnetic Exchange Forces of Iron on the Atomic Scale,” Nano Letters 9 (2009) pp. 200204.Google Scholar
Nunes, G., Jr. and Freeman, M., “Picosecond Resolution in Scanning Tunneling Microscopy,” Science 262 (1993) pp. 10291032.Google Scholar
Loth, S., Etzkorn, M., Lutz, Ch. P., Eigler, D. M., and Heinrich, A. J., “Measurement of Fast Electron Spin Relaxation Times with Atomic Resolution,” Science 329 (2010) pp. 16281630.Google Scholar
de Loubens, G., Naletov, V. V., Viret, M., Klein, O., Hurdequint, H., Ben Youssef, J., Boust, F., and Vukadinovic, N., “Magnetic Resonance Spectroscopy of Perpendicularly Magnetized Permalloy Multilayer Disks,” Journal of Applied Physics 101 (2007) art. no. 09F514.Google Scholar
An, T., Ohnishi, N., Eguchi, T., Hasegawa, Y., and Kabos, P., “Local Excitation of Ferromagnetic Resonance and Its Spatially Resolved Detection with an Open-Ended Radio-Frequency Probe,” IEEE Magnetics Letters 1 (2010) art. no. 3500104.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×