Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T15:29:27.368Z Has data issue: false hasContentIssue false

15 - Transforming images

from Part V - Transforming the image

Published online by Cambridge University Press:  05 November 2012

S. G. Hoggar
Affiliation:
University of Glasgow
Get access

Summary

Here we extend all things Fourier to two dimensions. Shortly we will be able to model many effects on an image, such as motion or focus blur, by the 2D version of convolution, which is handled especially simply by the Fourier Transform. This enables us to restore an image from many kinds of noise and other corruption. We begin Section 15.1 by showing how the Fourier Transform, and others, may be converted from a 1- to a 2-dimensional transform of a type called separable, reducing computation and adding simplicity. In the Fourier case we may apply the FFT in each dimension individually, and hence speed calculation still further.

In Section 15.1.3 we prove that certain changes in an image result in predictable changes in its transform. We include the effect of both rotation and projection, which are germane to computerised tomography in Chapter 18. In Section 15.1.4 we present consequences of the 2D Convolution Theorem for the Fourier Transform, and offer a polynomial-based proof that purports to show ‘why’ the result holds. Section 15.1.5 establishes connections between correlation and the Fourier Transform, for later use.

We begin Section 15.2 by considering the low-level operation of changing pixels solely on the basis of their individual values, then move on to the possibilites of ‘filtering’ by changing Fourier coefficients. Next we see how the same effect may be accomplished by convolving the original with a matrix of coefficients. We introduce filters that achieve edge-detection in an image.

Type
Chapter
Information
Mathematics of Digital Images
Creation, Compression, Restoration, Recognition
, pp. 560 - 636
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Transforming images
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Transforming images
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Transforming images
  • S. G. Hoggar, University of Glasgow
  • Book: Mathematics of Digital Images
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511810787.018
Available formats
×