Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T03:31:16.187Z Has data issue: false hasContentIssue false

7 - Ergodicity and the Bernoulli property for toral linked twist maps

Published online by Cambridge University Press:  03 February 2010

Rob Sturman
Affiliation:
University of Bristol
Julio M. Ottino
Affiliation:
Northwestern University, Illinois
Stephen Wiggins
Affiliation:
University of Bristol
Get access

Summary

In this chapter we apply a global geometric argument to extend the result of the previous chapter to ergodicity and the Bernoulli property for toral linked twist maps. Conditions are given such that these results hold.

Introduction

As discussed in Chapter 3, the property of ergodicity is a long way down in the ergodic hierarchy. For the strongest mixing behaviour, we would like our linked twist maps to possess the Bernoulli property. Fortunately, the Katok–Strelcyn version of Pesin theory given in Chapter 5 gives conditions to show exactly that. Recall that if the Katok–Strelcyn conditions are satisfied, and Lyapunov exponents are non-zero for every tangent vector, and for almost every point, we have the existence of local stable and unstable manifolds for almost all points in our domain for a smooth dynamical system with singularities. Furthermore, if some forward iterate of the local unstable manifold of some point intersects some backward iterate of the local stable manifold of another point, for almost every pair of points (the Manifold Intersection Property), then the ergodic partition we showed to exist in the previous chapter has only one component, and so our linked twist map is ergodic. Moreover, if every (far enough) forward iterate of the local unstable manifold intersects some (far enough) backward iterate of the local stable manifold, again for almost every pair of points (the Repeated Manifold Intersection Property), then the linked twist map has the Bernoulli property.

In this chapter we prove that both these conditions hold for toral linked twist maps, following the work of Wojtkowski (1980) and, mainly, Przytycki (1983).

Type
Chapter
Information
The Mathematical Foundations of Mixing
The Linked Twist Map as a Paradigm in Applications: Micro to Macro, Fluids to Solids
, pp. 194 - 216
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×