Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T15:12:16.513Z Has data issue: false hasContentIssue false

25 - Martian polar processes

from Part V - Synthesis

Published online by Cambridge University Press:  10 December 2009

T. N. Titus
Affiliation:
US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA
W. M. Calvin
Affiliation:
Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA
H. H. Kieffer
Affiliation:
Celestial Reasonings 2256 Christmas Tree Lane Carson City, NV 89703, USA
Y. Langevin
Affiliation:
Institut d'Astrophysique Spatiale 91405 Orsay France
T. H. Prettyman
Affiliation:
Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545 USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The polar caps are the most active regions on Mars. The annual cycling of atmospheric CO2 into the seasonal CO2 ice caps is a driving force of the Martian climate. The polar layered deposits (PLDs), with thousands of layers whose thickness is only resolvable with sub-meter spatial resolution from orbit, may contain a record of past climates. The polar regions contain the majority of known H2O ice deposits, distributed between the residual caps and near-surface ice in the regolith. In this chapter, we synthesize results from missions and instruments largely presented in detail elsewhere in this book, and consider the implications for Martian polar processes and the areas for future research. The focus here is on presenting evidence for and interpretations concerning the CO2 cycle and other related polar processes. Implications for water-ice in the subsurface are examined with respect to its effects on the CO2 cycle. Comparisons of water-ice abundance to the mass and distribution of seasonal CO2 ice are also explored. While the amount of available data has increased exponentially, our knowledge and understanding of Martian polar processes has increased much more gradually. As each question about the polar regions of Mars is answered, several new questions are brought to light. Many of the processes that occur in the polar regions of Mars do not have direct analogs on Earth, but do have analogs in other parts of the Solar System.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 578 - 598
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonson, O., Zuber, M. T., Smith, D. E., et al., Depth, distribution, and density of CO2 deposition on Mars, J. Geophys. Res. 109, E05004, doi:10.1029/2003JE002223, 2004.CrossRefGoogle Scholar
Antoniadi, E. M., 1930, The Planet Mars, Trans. Patrick Moore, Devon, UK: Keith Reid Ltd., 1975.Google Scholar
Barker, E. S., Schorn, R. A., Woszczyk, A., Tull, R. G., and Little, S. J., Mars: detection of atmospheric water vapor during the southern hemisphere spring and summer season, Science 170, 1308–10, 1970.CrossRefGoogle ScholarPubMed
Bass, D. S., Herkenhoff, K. E., and Paige, D. A., Variability of Mars' north polar water ice cap. 1. Analysis of Mariner 9 and Viking Orbiter imaging data, Icarus 144, 382–96, 2000.CrossRefGoogle Scholar
Basu, S., Richardson, M. I., and Wilson, J. R., Simulation of the Martian dust cycle with the GFDL Mars GCM, J. Geophys. Res. 109, E11006, doi:10.1029/2004JE002243, 2004.CrossRefGoogle Scholar
Bell III, J. F., P. C. Thomas, M. J. Wolff, S. W. Lee, and P. B. James, Mineralogy of the north polar sand sea from 1995 Hubble Space Telescope near-IR observations. Lunar Planet. Sci. Conf. XXVIII, Abstract #1757, 1997.
Bell III, J. F., McSween, H. Y., Crisp, J. A., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Benson, J. L. and James, P. B., Yearly comparisons of the martian polar caps: 1999–2003 Mars Orbiter Camera observations, Icarus 174, 513–23, 2005.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Poulet, F., et al., Perennial water ice identified in the South polar cap of Mars, Nature 428, 627–30, 2004.CrossRefGoogle ScholarPubMed
Blunck, J., Mars and Its Satellites: A Detailed Commentary on the Nomenclature, 2nd rev edn., Smithtown, NY: Exposition Press, 1982.Google Scholar
Bonev, B. P., James, P. B., Bjorkman, J. E., and Wolff, M. J., Regression of the Mountains of Mitchel polar ice after the onset of a global dust storm on Mars, Geophys. Res. Lett. 29, doi:10.1029/2002GL015458, 2002.CrossRefGoogle Scholar
Bonev, B. P., Bjorkman, J. E., Hansen, G. B., James, P. B., and Wolff, M. J., Effects of atmospheric dust on residual south polar cap stability, Annu. Lunar Planet. Conf. XXXVI, Houston, TX: Lunar and Planetary Institute, Abstract #1101, March 14–18, 2005.Google Scholar
Boynton, W., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.CrossRefGoogle ScholarPubMed
Byrne, S. and Ingersoll, A. P., A sublimation model for Martian south polar ice features, Science 299, 1051–3, 2003.CrossRefGoogle ScholarPubMed
Calvin, W. M., Additions and corrections to the absorption coefficients of CO2 ice: applications to the martian south polar cap, J. Geophys. Res. 95, 14743–50, 1990.CrossRefGoogle Scholar
Calvin, W. M. and Titus, T. N., Summer season variability of the north residual cap of Mars as observed by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES), Planet. Space Sci. 56, 212–26, doi:10.1016/j.pss.2007.08.005, 2008.CrossRefGoogle Scholar
Cantor, B., Malin, M., and Edgett, K. S., Multiyear Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season, J. Geophys. Res. 107, CiteID 5014, doi:10.1029/2001JE001588, 2002.CrossRefGoogle Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W., and Roush, T., A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos, J. Geophys. Res. 100, 5251–63, 1995.CrossRefGoogle Scholar
Clancy, R. T., Wolff, M. J., and Christiansen, P. R., Mars aerosol studies with the MGS TES emission phase function observations: Opacities, particle sizes, and ice cloud types versus latitude and solar longitude, J. Geophys. Res. 108, 5098, doi:10.1029/2003JE002058, 2003.CrossRefGoogle Scholar
Colaprete, A., Haberle, R. M., and Toon, O. B., Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res. 108, CiteID 5081, doi:10.1029/2003JE002053, 2003.CrossRefGoogle Scholar
Colaprete, A., Barnes, J. R., Haberle, R. M., et al., Albedo of the south pole on Mars determined by topographic forcing of atmosphere dynamics, Nature 435, 184–8, 2005.CrossRefGoogle ScholarPubMed
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F., CO2 clouds, CAPE and convection on Mars: observations and general circulation modeling, Planet. Space Sci. 56, 150–80, doi:10.1016/j.pss.2007.08.010, 2008.CrossRef
Cutts, J. A. and Smith, R. S. U., Eolian deposits and dunes on Mars, J. Geophys. Res. 78, 4139–54, 1973.CrossRefGoogle Scholar
Cutts, J. A., Blasius, K. R., Briggs, G. A., et al., North polar region of Mars: imaging results from Viking 2, Science 194, 1329–37, 1976.CrossRefGoogle ScholarPubMed
Douté, S., Schmitt, B., Langevin, Y., Bibring, J. -P., et al., South pole of Mars: nature and composition of the icy terrains from Mars Express OMEGA observations, Planet. Space Sci. 55, 113–33, 2007.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A., Creep of water ices at planetary conditions: a compilation, J. Geophys. Res. 102, 16293–302, 1997.CrossRefGoogle Scholar
Durham, W. B., Kirby, S. H., and Stern, L. A., Steady-state flow of solid CO2: preliminary results, Geophys. Res. Lett. 26, 3493–6, 1999.CrossRefGoogle Scholar
Farmer, C. B., Davies, D. W., and LaPorte, D. D., Mars: northern summer ice cap water vapor observations from Viking 2, Science 194, 1339–41, 1976.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Boynton, W. V., et al., CO2 frost cap thickness on Mars during northern winter and spring, J. Geophys. Res. 108, CiteID 5103, doi:10.1029/2003JE002101, 2003.CrossRefGoogle Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109, CiteID E09006, doi:10.1029/2003JE002160, 2004.CrossRefGoogle Scholar
Fischbacher, G. E., L. J. Martin, and W. A. Baum, Martian Polar Cap Boundaries. Final Report A, Contract 951547, Jet Propulsion Laboratory, Pasadena, CA. Planetary Research Center, Lowell Observatory, Flagstaff, AZ, 1969.
Fisher, D. A., Internal layers in an “accublation” ice cap: a test for flow, Icarus 144, 289–94, 2000.CrossRefGoogle Scholar
Folkner, W. M., Kahn, R. D., Preston, R. A., et al., Mars dynamics from Earth-based tracking of the Mars Pathfinder lander, J. Geophys. Res. 102, 4057–64, 1997.CrossRefGoogle Scholar
Forget, F. and Pollack, J. B., Thermal infrared observations of the condensing Martian polar caps: CO2 ice temperatures and radiative budget, J. Geophys. Res. 101, 16865–79, 1996.CrossRefGoogle Scholar
Forget, F., Hansen, G. B., and Pollack, J. B., Low brightness temperatures of Martian polar caps: CO2 clouds or low surface emissivity, J. Geophys. Res. 100, 21219–34, 1995.CrossRefGoogle Scholar
Forget, F., Hourdin, F., and Talagrand, O., CO2 snowfall on Mars: simulation with a general circulation model, Icarus 131, 302–16, 1998.CrossRefGoogle Scholar
Forget, F., Hourdin, F., Fournier, R., et al., Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res.104, 24155–76, 1999.CrossRefGoogle Scholar
Glenar, D. A., Hansen, G., Bjoraker, G., et al., Bright-region radiative properties within the Mars south polar cap (Ls= 231°) from near-infrared spectroscopic imaging, Icarus 174, 600–3, 2005.CrossRefGoogle Scholar
Grundy, W. M. and Schmitt, B., The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice, J. Geophys. Res. 103, 25809–22, 1998.CrossRefGoogle Scholar
Grundy, W. M., Buie, M. W., Stansberry, J. A., Spencer, J. R., and Schmitt, B., Near-infrared spectra of icy outer Solar System surfaces: remote determination of H2O ice temperatures, Icarus 142, 536–49, 1999.CrossRefGoogle Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al., General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res. 104, 8957–74, 1999.CrossRefGoogle Scholar
Haberle, R. M., Mattingly, B., and Titus, T. N., Reconciling different observations of the CO2 ice mass loading of the Martian north polar cap, Geophys. Res. Lett. 31, CiteID L05702, 2004.CrossRefGoogle Scholar
Hansen, G. B., The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 micrometers, J. Geophys. Res. 102, 21569–87, 1997.CrossRefGoogle Scholar
Hansen, G. B., Control of the radiative behavior of the Martian polar caps by surface CO2 ice: evidence from Mars Global Surveyor measurements, J. Geophys. Res. 104, 16471–86, 1999.CrossRefGoogle Scholar
Hansen, G. B., Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 µm, J. Geophys. Res. 110, CiteID E11003, doi:10.1029/2005JE002531, 2005.CrossRefGoogle Scholar
Hansen, G. B., Giuranna, W., Formisano, V., et al., PFS-MEX observation of ices in the residual south polar cap of Mars, Planet. Space Sci. 53, 1089–95, 2005.CrossRefGoogle Scholar
Haas, W. H., Flashes on Mars observed in 1937 and some random remarks, J. Assoc. Lunar Planet. Observers, The Strolling Astronomer 45, 43–5, 2003.Google Scholar
Herkenhoff, K. E. and Vasavada, A. R., Dark material in the polar layered deposits and dunes on Mars, J. Geophys. Res. 104, 16487–500, 1999.CrossRefGoogle Scholar
Herkenhoff, K. E., Byrne, S., and Tanaka, K. L., Mars polar geologic nomenclature: what are the caps?4th Int. Conf. Mars Polar Sci. Explor., Davos, Switzerland, LPI Contribution No. 1323, p. 8034, October 2–6, 2006.Google Scholar
Herr, K. C. and Pimentel, G. C., Infrared absorptions near 3 microns recorded over the polar cap of Mars, Science 166, 496–9, 1969.CrossRefGoogle ScholarPubMed
Herschel, W., On the remarkable appearances at the polar regions of the planet mars, the inclination of its axis, the position of its poles, and its spheroidical figure; with a few hints relating to its real diameter and atmosphere, Philos. Trans. R. Soc. Lond. 74, 233–73, 1784.CrossRefGoogle Scholar
Hess, S. L., Static stability and thermal wind in an atmosphere of variable composition: application to Mars, J. Geophys. Res.84, 2969–73, 1979.CrossRefGoogle Scholar
Hinson, D. P. and Wilson, R. J., Transient eddies in the southern hemisphere of MarsGeophys. Res. Lett. 29, CiteID 1154, doi:10.1029/2001GL014103, 2002.CrossRefGoogle Scholar
Hobbs, P. V., Ice Physics, Oxford: Clarendon Press, 837pp., 1974.Google Scholar
Houben, H., Haberle, R. M., Young, R. E., and Zent, A. P., Modeling the Martian seasonal water cycle, J. Geophys. Res. 102, 9069–84, 1997.CrossRefGoogle Scholar
Hourdin, F., Forget, F., and Talagrand, O., The sensitivity of the Martian surface pressure and atmospheric mass budget to various parameters: a comparison between numerical simulations and Viking observations, J. Geophys. Res. 100, 5501–23, 1995.CrossRefGoogle Scholar
Howard, A. D., The role of eolian processes in forming surface features of the martian polar layered deposits, Icarus 144, 267–88, 2000.CrossRefGoogle Scholar
Hunt, G. E., On the infrared radiative properties of CO2 ice clouds: application to Mars, Geophys. Res. Lett. 7, 481–4, 1980.CrossRefGoogle Scholar
Ivanov, A. B. and Muhleman, D. O., The role of sublimation for the formation of the northern ice cap: results from the Mars Observer Laser Altimeter, Icarus 144, 436–8, 2000.CrossRefGoogle Scholar
Ivanov, A. B. and Muhleman, D. O., Cloud reflection observations: results from the Mars Orbiter Laser Altimeter, Icarus 154, 190–206, 2001.CrossRefGoogle Scholar
Jakosky, B. M., The role of seasonal reservoirs in the Mars water cycle: 1. Seasonal exchange of water with the regolith, Icarus 55, 1–18, 1983a.CrossRefGoogle Scholar
Jakosky, B. M., The role of seasonal reservoirs in the Mars water cycle: 2. Coupled models of the regolith, the polar caps, and atmospheric transport, Icarus 55, 19–39, 1983b.CrossRefGoogle Scholar
Jakosky, B. M., The seasonal cycle of water on Mars, Space Sci. Rev. 41, 131–200, 1985.CrossRefGoogle Scholar
Jakosky, B. M. and Haberle, R. M., Year-to-year instability of the Mars south polar cap, J. Geophys. Res. 95, 1359–65, 1990.CrossRefGoogle Scholar
Jakosky, B. M. and R. M. Haberle, The seasonal behavior of water on Mars. In Mars (ed. Kieffer, H. H.et al.), University of Arizina Press, pp. 969–1016, 1992.Google Scholar
Jakosky, B. M., Zent, A. P., and Zurek, R. W., The Mars water cycle: determining the role of exchange with the regolith, Icarus 130, 87–95, 1997.CrossRefGoogle Scholar
James, P. B., H. H. Kieffer, and D. A. Paige, Seasonal cycle of carbon dioxide on Mars. In Mars (ed. Kieffer, H. H.et al.), University of Arizona Press, pp. 934–68, 1992.Google Scholar
James, P. B., Bonev, B. P., and Wolff, M. J., Visible albedo of Mars' south polar cap: 2003 HST observations, Icarus 174, 596–9, 2005.CrossRefGoogle Scholar
Jones, K. L., Arvidson, R. E., Guinness, E. A., et al., One Mars year: Viking lander imaging observations, Science 204, 799–806, 1979.CrossRefGoogle ScholarPubMed
Kahn, R., T. Z. Martin, R. W. Zurek, and S. W. Lee, The Martian dust cycle. In Mars (ed. Kieffer, H. H.et al.), University of Arizona Press, pp. 1017–53, 1992.Google Scholar
Kahre, M. A., Murphy, J. R., and Haberle, R. M., Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model, J. Geophys. Res. 111, E06008, doi:10.1029/2005JE002588, 2006.CrossRefGoogle Scholar
Kelly, N. J., Boynton, W. V., Kerry, K., et al., Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution, J. Geophys. Res. 111, E03S07, doi:10.1029/2006JE002678, 2006.Google Scholar
Kieffer, H. H., Mars south polar spring and summer temperatures: A residual CO2 frost, J. Geophys. Res. 84, 8263–88, 1979.CrossRefGoogle Scholar
Kieffer, H. H., H2O grain-size and the amount of dust in Mars residual north polar-cap, J. Geophys. Res. 95, 1481–93, 1990.CrossRefGoogle Scholar
Kieffer, H. H., Cold jets in the martian polar caps, J. Geophys. Res. 112, E08005, doi:10.1029/2006JE002816, 2007.CrossRefGoogle Scholar
Kieffer, H. H. and Titus, T., TES mapping of Mars' north seasonal cap, Icarus 154, 162–80, 2001.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C. Jr., Martin, T. Z., Miner, E. D., and Palluconi, F. D., Martian north pole summer temperatures: dirty water ice, Science 194, 1341–4, 1976.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Titus, T. N., Mullins, K. F., and Christensen, P. R., Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size, J. Geophys. Res. 105, 9653–99, 2000.CrossRefGoogle Scholar
Kieffer, H. H., Christensen, P. R., and Titus, T. N., CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap, Nature 442, 793–6, 2006.CrossRefGoogle ScholarPubMed
Kravchenko, Y. and Krupskii, I., Thermal conductivity of solid N2O and CO2, Sov. J. Low Temp. Phys. 12, 46–8, 1998.Google Scholar
Lancaster, N. and Greeley, R., Sediment volume in the north polar sand sea of Mars, J. Geophys. Res. 95, 10921–7, 1990.CrossRefGoogle Scholar
Lange, N. A., Lange's Handbook of Chemistry, 10th edn., revised. New York: McGraw-Hill, 1967.Google Scholar
Langevin, Y., Poulet, F., Bibring, J.-P., et al., Summer evolution of the north polar cap of Mars as observed by OMEGA/Mars Express, Science307, 1581–3, 2005.CrossRefGoogle Scholar
Langevin, Y., Douté, S., Vincendon, M., et al., No signature of clear CO2 ice from the “cryptic” regions in Mars' south seasonal cap, Nature 442, 790–2, 2006.CrossRefGoogle ScholarPubMed
Langevin, Y., Bibring, J.-P., Montmessin, F., et al., Observations of the south seasonal cap of Mars during recession in 2004–2006 by the OMEGA visible/near-infrared imaging spectrometer on board Mars Express, J. Geophys. Res. 112, E08S12, doi:10.1029/2006JE002841, 2007.CrossRefGoogle Scholar
Larson, H. P. and Fink, U., Identification of carbon dioxide on the Martian polar caps, Astrophys. J. 171, L91–L95, 1972.CrossRefGoogle Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars exploration rovers: Spirit and opportunity, Science 306, 1753–6, 2004.CrossRefGoogle ScholarPubMed
Leighton, R. R. and Murray, B. C., Behavior of carbon dioxide and other volatiles on Mars, Science 153, 136–44, 1966.CrossRefGoogle ScholarPubMed
Litvak, M. L., Mitrofanov, I. G., Kozyrev, A. S., et al., Long-term observations of southern winters on Mars: estimations of column thickness, mass, and volume density of the seasonal CO2 deposit from HEND/Odyssey data, J. Geophys. Res. 112, E03S13, doi:10.1029/2006JE002832, 2007.CrossRefGoogle Scholar
Malin, M. C., Carr, M. H., Danielson, G. E., et al., Early views of the Martian surface from the Mars orbiter camera of Mars global surveyor, Science 279, 1681–5, 1998.CrossRefGoogle ScholarPubMed
Malin, M. C., Caplinger, M. A., and Davis, S. D., Observational evidence for an active surface reservoir of solid carbon dioxide on Mars, Science 294, 2146–8, 2001.CrossRefGoogle ScholarPubMed
Markiewicz, W. J., Sablotny, R. M., Keller, H. U., et al., Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data, J. Geophys. Res. 104, 9009–17, 1999.CrossRefGoogle Scholar
Martin, L. J., P. B. James, A. Dollfus, K. Iwasaki, and J. D. Beish, Telescopic observations: visual, photographic, polarimetric. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 34–70, 1992.Google Scholar
Montmessin, F., Forget, F., Rannou, P., Cabane, M., and Haberle, R. M., Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res. 109, E10004, doi:10.1029/2004JE002284, 2004.CrossRefGoogle Scholar
Montmessin, F., Bertaux, J. L., Quemerais, E., et al., Subvisible CO2 ice clouds detected in the mesosphere of Mars, Icarus 183, 403–10, 2006.CrossRefGoogle Scholar
Neugebauer, G., Miinch, G., Kieffer, H. H., Chase, S. C. Jr., and Miner, E., Mariner, 1969 Infrared Radiometer results: temperatures and thermal properties of the Martian surface, Astron. J. 76, 719, 1971.CrossRefGoogle Scholar
Neumann, G. A., Smith, D. E., and Zuber, M. T., Two Mars years of clouds detected by Mars Orbiter Laser Altimeter, J. Geophys. Res. 108, doi:10.1029/2002JE001849, 2003.CrossRefGoogle Scholar
Nye, J. F., Durham, W. B., Schenk, P. M., and Moore, J. M., The instability of a south polar cap on Mars composed of carbon dioxide, Icarus 144, 449–55, 2000.CrossRefGoogle Scholar
Ockert-Bell, M. E., Bell III, J. F., Pollack, J. B., McKay, C. P., and Forget, F., Absorption and scattering properties of the Martian dust in the solar wavelengths, J. Geophys. Res. 102, 9039–50, 1997.CrossRefGoogle ScholarPubMed
Paige, D. A., The annual heat balance of the Martian polar caps from Viking observations, Ph.D. thesis, California Institute of Technology, 1985.
Paige, D. A. and Ingersoll, A. P., Annual heat-balance of Martian polar caps: Viking observations, Science 228, 1160–8, 1985.CrossRefGoogle ScholarPubMed
Paige, D. A. and Keegan, K. D., Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations. 2. South polar region, J. Geophys. Res. 99, 25993–26013, 1994.CrossRefGoogle Scholar
Paige, D. A., Bachman, J. E., and Keegan, K. D., Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region, J. Geophys. Res. 99, 25959–91, 1994.CrossRefGoogle Scholar
Pearl, J. C., Smith, M. D., Conrath, B. J., and Christensen, P. R., Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res. 106, 12325–38, 2001.CrossRefGoogle Scholar
Piqueux, S., Byrne, S., and Richardson, M. I., Sublimation of Mars's southern seasonal CO2 ice cap and the formation of spiders, J. Geophys. Res. 108, CiteID 5084, doi:10.1029/2002JE002007, 2003.CrossRefGoogle Scholar
Pollack, J. B., Haberle, R. M., Murphy, J. R., Schaeffer, J., and Lee, H., Simulations of the general circulation of the Martian atmosphere: 2. Seasonal pressure variations, J. Geophys. Res. 98, 3149–81, 1993.CrossRefGoogle Scholar
Pollack, J. B., Ockert-Bell, M. E., and Shepard, M. K., Viking lander image analysis of Mar, tian atmospheric dust, J. Geophys. Res. 100, 5235–50, 1995.CrossRefGoogle Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al., Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy, J. Geophys. Res. 109, E05001, doi:10.1029/2003JE002139, 2004.CrossRefGoogle Scholar
Prettyman, T. H., Elphic, R. C., Feldman, W. C., et al., Spatial deconvolution of Mars Odyssey neutron spectroscopy data: analysis of Mars southern seasonal cap, Lunar Planet. Sci. XXXVI, Abstract #1384, 2005.Google Scholar
Quirico, E. and Schmitt, B., Near-infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: implications for Triton and Pluto, Icarus 127, 354–78, 1997.CrossRefGoogle Scholar
Richardson, M. I. and Wilson, R. J., Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res. 107, 5031, doi:10.1029/2001JE001536, 2002.Google Scholar
Roach, L. H., Mustard, J. F., Murchie, S., et al., CRISM spectral signatures of the north polar gypsum dunes, Lunar Planet. Sci. Conf. XXXVIII, League City, Texas, LPI Contribution No. 1338, p. 1970, March 12–16, 2007.Google Scholar
Schmitt, B., S. Douté, Y. Langevin, et al., Northern seasonal condensates on Mars by OMEGA/Mars Express, Annu. Lunar Planet. Sci. Conf. XXXVI, League City, Texas, Abstract #2326, March 14–18, 2005a.
Schmitt, B., Douté, S., Langevin, Y., et al., Spring sublimation of the seasonal condensates on Mars from OMEGA/Mars Express, Fall AGU Meeting, Abstract #P23C-02, 2005b.Google Scholar
Smith, D. E., Zuber, M. T., and Neumann, G. A., Seasonal variations of snow depth on Mars, Science 294, 2141–6, 2001a.CrossRefGoogle Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al., Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res. 106, 23689–722, 2001b.CrossRefGoogle Scholar
Smith, D. E. and M. T. Zuber, Variation in the masses of the seasonal martian icecaps, Fall AGU Meeting, Abstract #P23C-01, 2005.
Smith, M., Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus 167, 148–65, 2004.CrossRefGoogle Scholar
Smith, M. D., The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer, J. Geophys. Res. 107, CiteID 5115, doi:10.1029/2001JE001522, 2002.CrossRefGoogle Scholar
Soderblom, L. A., Malin, M. C., Cutts, J. A., and Murray, B. C., Mariner 9 observations of the surface of Mars in the north polar region, J. Geophys. Res. 78, 4197–210, 1973.CrossRefGoogle Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al., Mars' south polar Ar enhancement: a tracer for south polar seasonal meridional mixing, Science 306, 1364–7, 2004.CrossRefGoogle ScholarPubMed
Stoney, G. Jo, Of atmospheres upon planets and satellites, Astrophys. J. 7, 25, 1898.CrossRefGoogle Scholar
Svitek, T. and Murray, B., Winter frost at Viking Lander 2 site, J. Geophys. Res. 95, 1495–510, 1990.CrossRefGoogle Scholar
Tanaka, K. L. and Scott, D. H., Geologic map of the polar regions of Mars, Scale 1:15,000,000. USGS Misc. Inv. Ser. Map, I-1802 C, 1987.Google Scholar
Thomas, P., K. E. Herkenhoff, A. D. Howard, B. C. Murray, and S. L. Squyres, Polar deposits of Mars. In Mars (ed. Kieffer, H. H.et al.), University of Arizona Press, pp. 767–95, 1992.Google Scholar
Thomas, P. C., Malin, M. C., Edgett, K. S., et al., North-south geological difference between the residual polar caps on Mars, Nature 404, 161–4, 2000.CrossRefGoogle Scholar
Thomas, P. C., Malin, M. C., James, P. B., et al., South polar residual cap of Mars: features, stratigraphy, and changes, Icarus 174, 535–59, 2005.CrossRefGoogle Scholar
Tillman, J. E., Johnson, N. C., Guttorp, P., and Percival, D. B., The Martian annual atmospheric-pressure cycle: years without great dust storms, J. Geophys. Res. 98, 10963–71, 1993.CrossRefGoogle Scholar
Titov, D. V., Water Vapour in the atmosphere of Mars, Adv. Space. Res. 29, 183–91, 2002.CrossRefGoogle Scholar
Titus, T. N. and Kieffer, H. H., IR spectral properties of dust and ice at the mass south polar cap, American Astronomical society, DPS Meeting #33, Abstract #19.15, Bull. Am. Astron. Soc. 33, 1071, 2001.Google Scholar
Titus, T. N., Mars polar cap edges tracked over 3 full Mars years, Annu. Lunar Planet. Sci. Conf. XXXVI, Houston, TX: Lunar and planetary Institute, Abstract #1993, March 14–18, 2005a.Google Scholar
Titus, T. N., Thermal infrared and visual observations of a water ice lag in the Mars southern summer, Geophys. Res. Lett. 32, L24204, doi:10.1029/2005GL024211, 2005b.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., Mullins, K. F., TES observations of the south pole, American Astronomical Society, DPS meeting #30, #20.05, Bull. Amer. Astron. Soc. 30, 1049, 1998.Google Scholar
Titus, T., Kieffer, H. H., Mullins, K. F., and Christensen, P. R., TES premapping data: slab ice and snow flurries in the Martian north polar night, J. Geophys. Res. 106, 23181–96, 2001.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R., Exposed water ice discovered near the south pole of Mars, Science 299, 1048–51, 2003.CrossRefGoogle ScholarPubMed
Tokar, R. L., Feldman, W. C., Prettyman, T. H., et al., Ice concentration and distribution near the south pole of Mars: synthesis of Odyssey and global surveyor analyses, Geophys. Res. Lett. 29, 1904, doi:10.1029/2002GL015691, 2002.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H., and Wegryn, E., Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder, J. Geophys. Res. 104, 8987–9007, 1999.CrossRefGoogle Scholar
Tsoar, H., Greeley, R., and Peterfreund, A. R., Mars: the north polar sand sea and related wind patterns, J. Geophys. Res. 84, 8167–80, 1979.CrossRefGoogle Scholar
Tyler, D. and Barnes, J. R., A mesoscale model study of summertime atmospheric circulations in the north polar region of Mars, J. Geophys. Res. 110, CiteID E06007, doi:10.1029/2004JE002356, 2005.CrossRefGoogle Scholar
Tyler, G. L., Balmino, G., Hinson, D. P., et al., Radio science observations with Mars Global Surveyor: orbit insertion through one Mars year in mapping orbit, J. Geophys. Res. 106, 23327–48, 2001.CrossRefGoogle Scholar
Wagstaff, K. L., Titus, T. N., Ivanov, A. B., Castaño, R., and Bandfield, J. L., Stratigraphic analysis of the northern polar layered deposits of Mars: implications for recent climate history, Planet. Space Sci. 56, 256–65, doi:10.1016/j.pss.2007.08.008, 2008.Google Scholar
Wall, S. D., Analysis of condensates formed at the Viking-2 Lander site: the 1st winter, Icarus 47, 173–83, 1981.CrossRefGoogle Scholar
Ward, W. R. and Rudy, D. J., Resonant obliquity of Mars?Icarus 94, 160–4, 1991.CrossRefGoogle Scholar
Wang, H. and Ingersoll, A. P., Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera, J. Geophys. Res. 107, CiteID 5078, doi:10.1029/2001JE001815, 2002.CrossRefGoogle Scholar
Warren, S. G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt. 23, 1206–25, 1984.CrossRefGoogle ScholarPubMed
Weast, R. C. (ed.), Handbook of Chemistry and Physics, 51st edn., Cleveland: Chemical Rubber Co., 1970.Google Scholar
Wells, E. H. and Hale, D. P., Flashes on Mars observed in 1937 and some random remarks, Nature 232, 324–5, 1971.CrossRefGoogle Scholar
Wilson, L. J., Apparent flashes seen on Mars, Pop. Astron. 45, 430, 1937.Google Scholar
Winfree, K. W. and Titus, T. N., Estimation of CO2 coverage on Mars' south pole: an interannual assessment, Annu. Lunar Planet. Sci. Conf. XXXVII, League City, Texas, Abstract #2283, March 13–17, 2006.Google Scholar
Wolff, M. J. and Clancy, R. T., Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations, J. Geophys. Res. 108, 5097, doi:10.1029/2003JE002057, 2003.CrossRefGoogle Scholar
Wolff, M. J., Smith, M. D., Clancy, R. T., et al., Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, J. Geophys. Res. 111, E12S17, doi:10.1029/2006JE002786, 2006.CrossRefGoogle Scholar
Yoder, C. F. and Standish, E. M., Martian precession and rotation from Viking lander range data, J. Geophys. Res. 102, 4065–80, 1997.CrossRefGoogle Scholar
Zasova, L., Formisano, V., Moroz, V., et al., Water clouds and dust aerosols observations with PFS MEX at Mars, Planet. Space Sci. 53, 1065–77, 2005.CrossRefGoogle Scholar
Zuber, M. T., Smith, D. E., Soloman, S. C., et al., Observations of the north polar region of Mars from the Mars Observer Laser Altimeter, Science 282, 2053–60, 1998.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Martian polar processes
    • By T. N. Titus, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, H. H. Kieffer, Celestial Reasonings 2256 Christmas Tree Lane Carson City, NV 89703, USA, Y. Langevin, Institut d'Astrophysique Spatiale 91405 Orsay France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545 USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.026
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Martian polar processes
    • By T. N. Titus, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, H. H. Kieffer, Celestial Reasonings 2256 Christmas Tree Lane Carson City, NV 89703, USA, Y. Langevin, Institut d'Astrophysique Spatiale 91405 Orsay France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545 USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.026
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Martian polar processes
    • By T. N. Titus, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, W. M. Calvin, Department of Geological Science, MS 172, University of Nevada Reno, NV 89557-0138, USA, H. H. Kieffer, Celestial Reasonings 2256 Christmas Tree Lane Carson City, NV 89703, USA, Y. Langevin, Institut d'Astrophysique Spatiale 91405 Orsay France, T. H. Prettyman, Los Alamos National Laboratory MS D466 Space and Atmospheric Science Los Alamos, NM 87545 USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.026
Available formats
×