Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 22
  • Print publication year: 2008
  • Online publication date: December 2009

4 - Mars Exploration Rovers: chemical composition by the APXS

from Part II - Elemental Composition: Orbital and in situ Surface Measurements
    • By J. Brückner, Geochemistry Department, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, G. Dreibus, Cosmochemistry Deparment, Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, R. Gellert, Department of Physics, University of Guelph Guelph, ON N1G 2W1, Canada, S. W. Squyres, Department of Astronomy, Cornell University, 428 Space Sciences Building, Ithaca, NY 14853, USA, H. Wänke, Abteilung Kosmochemie Max Planck Institut für Chemie, PO Box 3060, Mainz D-55020, Germany, A. Yen, JPL/Caltech 4800 Oak Grove Road M/S 183-501 Pasadena, CA 91109-8099, USA, J. Zipfel, Forschungsinstitut und Naturmuseum Senckenberg Frankfurt/Main, D-60325, Germany
  • Edited by Jim Bell, Cornell University, New York
  • Publisher: Cambridge University Press
  • DOI: https://doi.org/10.1017/CBO9780511536076.005
  • pp 58-102

Summary

ABSTRACT

The Alpha Particle X-Ray Spectrometers (APXSs) on board the Mars Exploration Rovers (MERs) determine the elemental compositions of Martian samples. Improvements to the version of the instrument flown on the Mars Pathfinder (MPF) mission allow, for the first time, in situ detection and quantification of trace elements such as nickel, zinc, and bromine. The APXS measurements are performed by placing the sensor head against or immediately above the sample surface. A wealth of compositional diversity has been discovered at the two MER landing sites. At Gusev crater, fresh rock surfaces in the plains resemble primitive basalts, while rocks in the Columbia Hills are significantly weathered and enriched in mobile elements such as phosphorus, sulfur, chlorine, and bromine. Sandstones cemented by sulfates as well as evidence for clay formation have also been found in the Columbia Hills. At Meridiani Planum, the layered sedimentary rocks were found to consist primarily of sulfates mixed with siliciclastic debris. Iron-rich spherules and their fragments, confirmed to be hematitic by the Mössbauer spectrometer (MB), are found armoring the soil bedforms as well as embedded in the outcrop rocks. A variety of unusual objects, including an iron-nickel meteorite and a likely ejecta fragment similar to a Martian meteorite, have also been discovered. The elemental compositions of soils analyzed at both sites are remarkably similar, indicative of global-scale homogenization or the similarity of the soil precursors.

REFERENCES
Anderson, D. L., The internal composition of Mars, J. Geophys. Res. 77, 789–95, 1972.
Arvidson, R. E., Seelos, F. P., Deal, K., et al., Mantled and exhumed terrains in Terra Meridiani, Mars, J. Geophys. Res. 108(E12), ROV 14–1, CiteID 8073, doi:10.1029/2002JE001982, 2003.
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing site to Backstay Rock in the Columbia Hills, J. Geophys. Res. – Planet 111, E02S01, doi:10.1029/2005JE002499, 2006.
Baird, A. K. and Clark, B. C., On the original igneous source of Martian fines, Icarus 45, 113–23, 1981.
Banin, A., B. C. Clark, and H. Wänke, Surface chemistry and mineralogy. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: The University of Arizona Press, pp. 594–625, 1992.
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity Rover at Meridiani Planum, Science 306, 1703–9, 2004.
Bland, P. A. and Smith, T. B., Meteorite accumulation on Mars, Icarus 144, 21–6, 2000.
Boynton, W. V., Taylor, G. J., Evans, L. G., et al., Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars, J. Geophys. Res. 112, E12S99, doi:10.1029/2007JE002887, 2007.
Brückner, J., Dreibus, G., Rieder, R., and Wänke, H., Refined data of APXS analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res. 108(E12), 8094, doi:10.1029/2003JE002060, 2003.
Christensen, P. R., Bandfield, J. L., Clark, R. N., et al., Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: evidence for near-surface water, J. Geophys. Res. 105(E4), 9623–42, 2000.
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. – Planets 106(E10), 23873–85, doi:2000JE001415, 2001.
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity Rover, Science 306, 1733–9, 2004.
Clark, B. C., Implications of abundant hygroscopic minerals in the Martian regolith, Icarus 34, 645–65, 1978.
Clark, B. C., Geochemical components in Martian soil, Geochim. Cosmochim. Acta 57, 4575–81, 1993.
Clark, B. C. and Baird, A. K., Martian regolith X-ray analyzer; Test results of geochemical performance, Geology 1, 15–18, 1973.
Clark, B. C. and Baird, A. K., Volatiles in the Martian regolith, Geophys. Res. Lett. 6, 811–14, 1979a.
Clark, B. C. and Baird, A. K., Is the Martian lithospheree sulfur rich?, J. Geophys. Res. 84, 8395–403, 1979b.
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of Martian fines, J. Geophys. Res. 87(B12), 10059–67, 1982.
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.
Clark, B. C., Arvidson, R. E., Gellert, R., et al., Evidence for montmorillonite or its compositional equivalent in Columbia Hills, Mars, J. Geophys. Res. 112, CiteID E06S01, doi:10.1029/2006JE002756, 2007.
Connolly, H. C. Jr., Zipfel, J., Grossman, J. N., et al., The Meteoritical Bulletin Number, No. 90, 2006, Meteorit. Planet. Sci. 41(9), 1271–419, 2006.
Dreibus, G. and Haubold, R., Phosphorus sorption by terrestrial basalt and granite and implications for the martian mantle, Icarus 167, 166–9, 2004.
Dreibus, G. and Wänke, H., Accretion of the earth and the inner planets, Proc. 27th Int. Geol. Conf. Moskau: Vol. 11, Geochemistry and Cosmochemistry, Utrecht: VNU Science Press, pp. 1–20, 1984.
Dreibus, G. and Wänke, H., Volatiles on Earth and Mars: a comparison, Icarus 71, 225–40, 1987.
Dreibus, G., Jagoutz, E., Spettel, B., and Wänke, H., Phosphate-mobilization on Mars? Implication from leach experiments on SNC's, Lunar Planet. Sci. XXVII, Houston: Lunar and Planetary Institute, pp. 323–4, Extended Abstract, 1996.
Dreibus, G., J. Brückner, and W. V. Boynton, Evolution of the Martian crust as derived from surface measurements by Mars Odyssey, other space missions, and Martian meteorites, 6th Int. Conf. Mars 2003, Pasadena, CA, USA, Abstract #3088, 2003.
Dyar, D. M., Ferric iron in SNC meteorites as determined by Mössbauer spectroscopy: implications for martian landers and martian oxygen fugacity, Meteorit. Planet. Sci. 38, 1733–52, 2003.
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109(E9), E09006, doi:10.1029/2003JE002160, 2004.
Foley, C. N., Economou, T. E., Clayton, R. N., and Dietrich, W., Calibration of the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. – Planet 108(E12), 8095, doi:10.1029/2002JE002018, 2003a.
Foley, C. N., Economou, T., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. – Planets 108(E12), 8096, doi:10.1029/2002JE002019, 2003b.
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer, Science 305, 829–32, 2004.
Gellert, R., Rieder, R., Brückner, J., et al., The Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. – Planets 111, E02S05, doi:10.1029/2005JE002555, 2006.
Gellert, R., Rieder, R., Anderson, R. C., et al., In-situ chemistry along the traverse of Opportunity at Meridiani Planum: sulfate rich outcrops, iron rich spherules, global soils and various erratics, J. Geophys. Res. submitted, 2008.
GEOROC, Geochemistry of Rocks of the Oceans and Continents – Database, Max-Planck-Institut fuer Chemie, Mainz, Germany, URL: http://georoc.mpch-mainz.gwdg.de/georoc/.
Golombek, M. P., Anderson, R. C., Barnes, J. R., et al., Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results, J. Geophys. Res. 104, 8523–53, 1999.
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover transverse, J. Geophys. Res. – Planets 111, E02S07, doi:10.1029/2005JE002503, 2006.
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, doi:10.1016/j.epsl.2005.09.039, 2005.
Halliday, A. N., Wänke, H., Birk, J. L., and Clayton, R. N., The accretion, composition, and early differentiation of Mars, Space Sci. Rev. 96, 197–230, 2001.
Harrison, T. M. and Watson, E. B., The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations, Geochim. Cosmochim. Acta 48, 1467–77, 1984.
Hartmann, W. K. and Neukum, G., Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165–94, 2001.
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, doi:10.1038/nature03640, 2005.
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's microscopic imager for water on Meridiani Planum, Science 306, 1727–30, 2004.
Jagoutz, E., Chronology of SNC meteorites, Space Sci. Rev. 56, 13–22, 1991.
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer, Science 306, 1740–5, 2004.
Lodders, K., A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions, Meteorit. Planet. Sci. 33, A183–90, 1998.
Lodders, K. and Fegley, B. Jr., An oxygen isotope model for the composition of Mars, Icarus 126, 373–94, 1997.
Longhi, J., E. Knittle, J. R. Holloway, and H. Wänke, The bulk composition, mineralogy and internal structure of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: The University of Arizona Press, pp. 184–208, 1992.
McLennan, S. M., Crustal heat production and the thermal evolution of Mars, Lunar Planet. Sci. XXXII, Houston: Lunar and Planetary Institute, Abstract #1349 (CD-ROM), 2001
McLennan, S. M., Composition and chemical evolution of the martian crust and mantle: integrating the data from missions and meteorites, 6th Int. Conf. Mars 2003, Houston, TX: Lunar and Planetary Institute, Abstract #3099, 2003.
McSween, H. Y., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit Rover in Gusev crater, Science 305, 842–5, 2004.
McSween, H. Y., Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. – Planets 111, E02S10, doi:10.1029/2005JE002477, 2006a.
McSween, H. Y., Ruff, S. W., Morris, R. V., et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars, J. Geophys. Res. 111, E09S91, doi:10.1029/2006JE002698, 2006b.
Meyer, C., The Mars Meteorite Compendium, Astromaterials Research & Exploration Science (ARES), (JSC #27672 Revision C), Houston, Texas: Lyndon B. Johnson Space Center, URL: www-curator.jsc.nasa.gov/antmet/mmc, 2006.
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.
Morgan, J. W. and Anders, E., Chemical composition of Mars, Geochim. Cosmochim. Acta 43, 1601–10, 1979.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer Spectrometer on the Spirit Rover, Science 305, 833–6, 2004.
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.
Nimmo, F. and Stevenson, D. J., Estimates of Martian crustal thickness from viscous relaxation of topography, J. Geophys. Res. 106, 5085–98, 2001.
Palme, H. and Beer, H., Abundances of the elements in the solar system, Landolt-Börnstein, Group VI: Astronomy and Astrophysics, New Series VI/3a, Berlin: Springer Verlag, pp. 196–221, 1993.
Rieder, R., Wänke, H., Economou, T., and Turkevich, A., Determination of the chemical composition of Martian soil and rocks: the alpha proton X ray spectrometer, J. Geophys. Res. – Planets 102(E2), 4027–44, 1997a.
Rieder, R., Economou, T., Wänke, H., et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary results from the X-ray mode, Science 278, 1771–4, 1997b.
Rieder, R., Gellert, R., Brückner, J., et al., The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108(E12), 8066, doi:10.1029/2003JE002150, 2003.
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer, Science 306, 1746–9, 2004.
Schröder, C., Gellert, R., Jolliff, B. L., et al., A stony meteorite discovered by the Mars Exploration Rover Opportunity on Meridiani Planum, Mars, Meteorit. Planet. Sci. 41, 5285, 2006.
Soderblom, L. A., Anderson, R. C., and Arvidson, R. E., Soils of Eagle crater and Meridiani Planum at the Opportunity Rover landing site, Science 306, 1723–6, 2004.
Squyres, S. W., Arvidson, E., Baumgartner, E. T., et al., The Athena Mars Rover science investigation, J. Geophys. Res. 108(E12), 8062, doi:10.1029/2003JE002121, 2003.
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena Science Investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306, 1709–14, 2004c.
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. – Planets 111, E02S11, doi:10.1029/2005JE002562, 2006a.
Squyres, S. W., Arvidson, R. E., Bollen, D., et al., Overview of the Opportunity Mars Exploration Rover Mission to Meridiani Planum: Eagle crater to Purgatory Ripple, J. Geophys. Res. 111, E12S12, doi:10.1029/2006JE002771, 2006b.
Surkov, Yu. A., Barsukov, V. L., Moskaleva, L. P., et al., Determination of the elemental composition of martian rocks from Phobos 2, Nature 341, 595–8, 1989.
Surkov, Yu. A., Moskaleva, L. P., Zolotov, M. Yu., et al., Phobos-2 data on Martian surface geochemistry, Geochem. Int. 31, 50–8, 1994.
Taylor, G. J., L. M. V. Martel, and W. V. Boynton, Mapping Mars geochemically, Lunar Planet. Sci. XXXVIII, Houston: Lunar and Planetary Institute, Abstract #1981 (CD-ROM), 2006.
Taylor, S. R. and McLennan, S. M., The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks, Philos. Trans. R. Soc. Lond. A 301, 381–99, 1981.
Taylor, S. R. and McLennan, S. M., The geochemical evolution of the continental crust, Rev. Geophys. 33, 241–65, 1995.
Tollari, N., Toplis, M. J., and Barnes, S.-J., Predicting phosphate saturation in silicate magmas: an experimental study of the effects of melt composition and temperature, Geochim. Cosmochim. Acta 70, 1518–36, doi:10.1016/j.gca.2005.11.024, 2006.
Toulmin, P. III, Rose, H. J. Jr., Christian, R. P., et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–34, 1977.
Trombka, J. I., Evans, L. G., Starr, R., et al., Analysis of the Phobos mission gamma-ray spectra from Mars, Proc. Lunar Planet. Sci. XXII, Houston: Lunar and Planetary Institute, pp. 23–9, 1992.
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006.
Wänke, H. and Dreibus, G., Chemical composition and accretion history of terrestrial planets, Philos. Trans. R. Soc. Lond. A 325, 545–57, 1988.
Wänke, H. and Dreibus, G., Chemistry and accretion history of Mars, Philos. Trans. R. Soc. Lond. A 349, 285–93, 1994.
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.
Wasson, J. T. and Kallemeyn, G. W., The IAB iron-meteorite complex: a group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochim. Cosmochim. Acta 66, 2445–73, 2002.
Wedepohl, K. H., The composition of the continental crust, Geochim. Cosmochim. Acta 59, 1217–32, 1995.
Wieczorek, M. A. and M. T. Zuber, The thickness of the Martian crust as inferred from geoid-to-topography ratios, Lunar Planet. Sci. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1390 (CD-ROM), 2002.
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, doi:10.1038/nature03637, 2005.
Zipfel, J., Anderson, R., Brückner, J., et al., APXS analyses of bounce rock: the first shergottite on Mars, Meteorit. Planet. Sci. 39 (Suppl. S), A118–A118, 2004.
Zuber, M. T., Solomon, S. C., Phillips, R. J., et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity, Science 287, 1788–93, 2000.