Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T15:54:21.582Z Has data issue: false hasContentIssue false

5 - Elemental abundances determined via the Mars Odyssey GRS

from Part II - Elemental Composition: Orbital and in situ Surface Measurements

Published online by Cambridge University Press:  10 December 2009

W. V. Boynton
Affiliation:
Lunar and Planetary Laboratory, University of Arizona Tuscon, AZ 85721, USA
G. J. Taylor
Affiliation:
Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504, Honolulu, HI 96822, USA
S. Karunatillake
Affiliation:
Cornell University, 514 Space Sciences Building, Ithaca, NY 14853-6801, USA
R. C. Reedy
Affiliation:
Institute of Meteoritics, University of New Mexico, MSC03-2050 Alburquerque, NM 87131, USA
J. M. Keller
Affiliation:
University of Arizona, 1629 E. University Blvd Tuscon, AZ 85721, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The Gamma Ray Spectrometer (GRS) onboard the Odyssey spacecraft has made the first global measurements of the elemental composition of the Martian surface using gamma rays measured from polar orbit. We report results for Si, Fe, K, Th, Cl, and H. The nominal spatial resolution is 450 km in diameter. Gamma Ray Spectrometer data show that the Martian surface is chemically heterogeneous. Elemental concentrations vary across the surface, including variations within high-albedo areas that are presumably covered with dust. Fe concentrations are uniformly high, in accord with the compositions of Martian meteorites and most rock samples analyzed in situ. K/Th is variable, but 95% of the surface has a weight ratio between 4000 and 7000. The mean (5300) is double that in terrestrial crustal rocks and in the inferred bulk silicate Earth. Cl varies substantially, with the highest values in the region west of the Tharsis Montes. Surface Types 1 and 2 (ST1 and ST2), identified from the Thermal Emission Spectrometer (TES) on Mars Global Surveyor (MGS), are indistinguishable except in the amount of K and Th they contain: ST2 is enriched in both elements by about 30% relative to ST1, while both types have similar K/Th ratios. The H2O mass fraction (stoichiometrically derived from the H content) in equatorial regions ranges from about 1.5%–7%, indicative of the presence of hydrous minerals.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 103 - 124
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agee, C. B. and Draper, D. S., Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle, Earth Planet. Sci. Lett. 224, 415–29, 2004.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical property experiments conducted by Opportunity at Meridiani Planum, Science 306, 1730–3, 2004.CrossRefGoogle ScholarPubMed
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing site to Backstay Rock in the Columbia Hills, J. Geophys. Res. – Planets 111, doi:10.1029/2005JE002499, 2006.CrossRefGoogle Scholar
Bandfield, J. L., Global mineral distributions on Mars, J. Geophys. Res. 107(E6), CiteID 5042, doi:10.1029/2001JE001510, 2002.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian surface compositions from MGS-TES, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Beattie, P., The generation of uranium series disequilibria by partial melting of spinel peridotite: constraints from partitioning studies, Earth Planet. Sci. Lett. 117, 379–91, 1993.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Crisp, J. A., et al., Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder, J. Geophys. Res. 105, 1721–55, 2000.CrossRefGoogle Scholar
Bertka, C. M. and Fei, Y., Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars, Earth Planet. Sci. Lett. 157, 79–88, 1998a.CrossRefGoogle Scholar
Bertka, C. M. and Fei, Y., Implications of Mars Pathfinder data for the accretion history of the terrestrial planets, Science 281, 1838–40, 1998b.CrossRefGoogle Scholar
Borg, L. E. and Draper, D. S., A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites, Meteorit. Planet. Sci. 38, 1713–31, 2003.CrossRefGoogle Scholar
Borg, L. E., Nyquist, L. E., Weissman, H., Shih, C.-Y., and Reese, Y., The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta 67, 3519–36, 2003.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.CrossRefGoogle ScholarPubMed
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G., et al., The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite, Space Sci. Rev. 110, 37–83, 2004.CrossRefGoogle Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al., Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res. 112, E12S99, doi:10.1029/2007JE002887, 2007.CrossRefGoogle Scholar
Brückner, J., Dreibus, G., Rieder, R., and Wänke, H., Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res. 108(E12), doi:10.1029/2003JE002060, 2003.CrossRefGoogle Scholar
Chambers, J. E., Making more terrestrial planets, Icarus 152, 205–24, 2001.CrossRefGoogle Scholar
Christensen, P. R., The spatial-distribution of rocks on Mars, Icarus 68(2), 217–38, doi:10.1016/0019-1035(86)90020-5, 1986.CrossRefGoogle Scholar
Christensen, P. R., Global albedo variations on Mars: implications for active aeolian transport, deposition, and erosion, J. Geophys. Res. B Solid Earth Planets 93(B7), 7611–24, 1988.CrossRefGoogle Scholar
Christensen, P. R. and Malin, M. C., High resolution thermal imaging of Mars, Lunar Planet. Sci. 19, 180–1, 1988.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–72, 2001.CrossRefGoogle Scholar
Christensen, P. R., McSween, H. Y., Bandfield, J. L., et al., Evidence for magmatic evolution and diversity on Mars from infrared observations, Nature 436, 504–9, 2005.CrossRefGoogle ScholarPubMed
Clark, B. C., Geochemical components in Martian soil, Geochim. Cosmochim. Acta 57, 4575, 1993.CrossRefGoogle Scholar
Clark, B. C., Baird, A. K., Weldon, R. J., et al., Chemical composition of Martian fines, J. Geophys. Res. 87, 10059–67, 1982.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M, et al., Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240, 73–94, http://dx.doi.org/10.1016/j.epsl.2005.09.040, 2005.CrossRefGoogle Scholar
Cohen, J. and Cohen, P., Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, London, England: L. Erlbaum Associates, 1983.Google Scholar
Dohm, J. M., Casavant, R. R., Strom, R. G., Zimbelman, J. R., and Scott, D. H., Latent outflow activity for western Tharsis, Mars: significant flood record exposed. J. Geophys. Res. 106, 12301–14, 2001a.CrossRefGoogle Scholar
Dohm, J. M., Ferris, J. C., Baker, V. R., et al., Ancient drainage basin of the Tharsis region, Mars: potential source for outflow channel systems and putative oceans or Paleolakes, J. Geophys. Res. 106, 32943–58, 2001b.CrossRefGoogle Scholar
Dohm, J. M., Ferris, J. C., Barlow, N. G., et al., The northwestern slope valleys (NSVs) region, Mars: a prime candidate site for the future exploration of Mars, Planet. Space Sci. 52, 189–98, 2004.CrossRefGoogle Scholar
Drake, M. J. and Righter, K., Determining the composition of the Earth, Nature 416, 39–44, 2002.CrossRefGoogle Scholar
Draper, D. S., Borg, L. E., and Agee, C. B., Crystallization of a Martian magma ocean and the formation of shergottites source regions: a less Fe-rich Mars?, Lunar Planet. Sci. XXXVI, Houston: Lunar and Planetary Institute, Abstract #1429, 2005.Google Scholar
Dreibus, G. and Wänke, H., Accretion of the Earth and the inner planets. Proc. 27th Int. Geol. Conf. 11, 1–20, 1984.Google Scholar
Elkins-Tanton, L. T., Parmentier, E. M., and Hess, P. C., Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars, Meteorit. Planet. Sci. 38, 1753–71, 2003.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Zaranek, S. E., Parmentier, E. M., and Hess, P. C., Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn, Earth Planet. Sci. Lett. 236, 1–12, 2005.CrossRefGoogle Scholar
Evans, L. G., R. C. Reedy, and J. I. Trombka, Introduction to planetary remote sensing gamma ray spectroscopy. In Remote Geochemical Analyses: Elemental and Mineralogical Composition (ed. Pieters, C. M. and Englert, P. A. J.), New York: Cambridge University Press, pp. 167–98, 1993.Google Scholar
Evans, L. G., Reedy, R. C., Starr, R. D., Kerry, K. E., and Boynton, W. V., Analysis of gamma-ray spectra measured by Mars Odyssey, J. Geophys. Res. – Planets 111(E3), 2006.Google Scholar
Farmer, C. B. and Doms, P. E., Global seasonal variation of water vapor on Mars and the implications of permafrost on Mars, J. Geophys. Res. 84, 2881–8, 1979.CrossRefGoogle Scholar
Feldman, W. C., Mellon, M. T., Maurice, S., et al., Hydrated states of MgSO4 at equatorial latitudes on Mars, Geophys. Res. Lett. 31, L16702, http://dx.doi.org/10.1029/2004GL020181, 2004.CrossRefGoogle Scholar
Foley, C. N., Economou, T., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108(E12), 8096, doi:10.1029/2002JE002019, 2003.Google Scholar
Ganapathy, R. and Anders, E., Bulk compositions of the Moon and Earth, estimated from meteorites, Proc. Lunar Sci. Conf. V, 1181–206, 1974.Google Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the alpha particle X-ray spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al., The Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Grove, T. L., Parman, S. W., Bowring, S. A., Price, R. C., and Baker, M. B., The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California, Contrib. Mineral. Petrol. 142, 375–96, 2002.CrossRefGoogle Scholar
Haberle, R. M., Joshi, M. M., Murphy, J. R., et al., General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res. 104 (E4), 8957–74, doi:10.1029/1998JE900040, 1999.CrossRefGoogle Scholar
Halliday, A. N., Lee, D.-C., Tommasini, S., et al., Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle, Earth Planet. Sci. Lett. 133, 379–95, 1995.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of Martian meteorites using MGS TES: integrating Martian meteorites into the global distribution of volcanic materials on Mars, Meteorit. Planet. Sci. 38, 871–86, 2003.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, 2005.CrossRefGoogle ScholarPubMed
Hauri, E. H., Wagner, T. P., and Grove, T. L., Experimental and natural partitioning of Th, U, Pb, and other trace elements between garnet, clinopyroxene, and basaltic melts, Chem. Geol. 117, 149–66, 1994.CrossRefGoogle Scholar
Hawkesworth, C., Turner, S., Peate, D., McDermott, F., and vanCalsteren, P., Elemental U and Th variations in island arc rocks: implications for U-series isotopes, Chem. Geol. 139, 207–21, 1997.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al., In-situ and experimental evidence for acidic weathering of rocks and soils on Mars, J. Geophys. Res. – Planets 111(E2), doi:10.1029/2005JE002515, 2006.CrossRefGoogle Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., et al., The abundances of major, minor, and trace elements in the earth's mantle as derived from primitive ultramafic nodules, Proc. Lunar Planet. Sci. Conf. X, 2031–50, 1979.Google Scholar
James, P. B., H. H. Kieffer, and D. A. Paige, The seasonal cycles of carbon dioxide on Mars. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 934–68, 1992.Google Scholar
Jones, J. H., Experimental trace element partitioning, A Handbook of Physical Constants: Rock Physics and Phase Relations, Washington, DC: American Geophysical Union, pp. 73–104, 1995.Google Scholar
Kargel, J. S., Proof for water, hints of life?, Nature 436, 66–99, 2004.Google Scholar
Karunatillake, S., Squyres, S. W., Taylor, G. J., et al., Composition of northern low-albedo regions of Mars: insights from the Mars Odyssey Gamma Ray Spectrometer, J. Geophys. Res. 111, E03S05, doi:10.1029/2006JE002675, 2006.Google Scholar
Karunatillake, S., Squyres, S. W., Boynton, W. V., et al., Chemical compositions at Mars landing sites subject to Mars Odyssey Gamma Ray Spectrometer constraints, J. Geophys. Res. 112, E08S90, doi:10.1029/2006JE002859, 2007.Google Scholar
Keller, J. M., Boynton, W. V., Karuntillake, S., et al., Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res. 111, E03S08, doi:10.1029/2006JE002679, 2006.Google Scholar
Kelly, N. J., Boynton, W. V., Kerry, K., et al., Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution, J. Geophys. Res. – Planets 111(E3), 2006.Google Scholar
Kieffer, H. H., B. M. Jakosky, and C. W. Snyder, The planet Mars: from antiquity to the present. In Mars (ed. Kieffer, H. H.et al.), Tucson: University of Arizona Press, pp. 1–33, 1992.Google Scholar
Kim, K. J., Drake, D. M., Reedy, R. C., Williams, R. M. S., and Boynton, W. V., Theoretical fluxes of gamma rays from the martian surface, J. Geophys. Res. – Planets 111(E3), 2006.Google Scholar
Levrard, B., Forget, F., Montmessin, F., and Laskar, J., Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity, Nature 431, 1072–5, 2004.CrossRefGoogle ScholarPubMed
Lodders, K., A survey of shergottites, nahklite and chassigny meteorites whole-rock compositions, Meteorit. Planet. Sci. 33, A183–90, 1998.CrossRefGoogle Scholar
Lodders, K. and Fegley, B. Jr., An oxygen isotope model for the composition of Mars, Icarus 126, 373–94, 1997.CrossRefGoogle Scholar
Longhi, J., E. Knittle, J. R. Holloway, and H. Wänke, The bulk composition, mineralogy, and internal structure of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 184–208, 1992.Google Scholar
Masarik, J. and Reedy, R. C., Gamma ray production and transport in Mars, J. Geophys. Res. 101, 18891–912, 1996.CrossRefGoogle Scholar
McDonough, W. F. and Sun, S.-S., The composition of the Earth, Chem. Geol. 120, 223–53, 1995.CrossRefGoogle Scholar
McKinney, G. W., Lawrence, D. J., Prettyman, T. H., et al., MCNPX benchmark for cosmic ray interactions with the Moon, J. Geophys. Res. 111, E06004, doi:10.1029/2005JE9002551, 2006.CrossRefGoogle Scholar
McLennan, S. M., Sedimentary silica on Mars, Geology 31, 315–18, 2003.2.0.CO;2>CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y., and Keil, K., Mixing relationships in the Martian regolith and the composition of globally homogeneous dust, Geochim. Cosmochim. Acta 64, 2155–66, 2000.CrossRefGoogle Scholar
McSween, H. Y., Murchie, S. L., Crisp, J., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–716, 1999.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M., Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. Res. 98, 3345–64, 1993.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H., The presence and stability of ground ice in the southern hemisphere of Mars, Icarus 169, 324–40, doi:10.1016/j.icarus.2003.10.022, 2004.CrossRefGoogle Scholar
Melson, W. G., T. Vallier, T. L. Wright, G. Byerly, and J. Nelen, Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading centers. In The Geophysics of the Pacific Ocean Basin and Its Margins (ed. Sutton, G. H., Manghnani, M. H., and Moberly, R.), Washington, DC: American Geophysical Union, pp. 351–67, 1976.CrossRefGoogle Scholar
Meyer, Jr. C., Mars Meteorite Compendium, NASA Johnson Space Center, JSC#27672 Revision (B), online: http://curator.jsc.nasa.gov/antmet/mmc/mmc.htm, 2003.
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. 111, E02S12, doi:10.1029/2005JE002560, 2006.CrossRefGoogle Scholar
Minitti, M. E. and Rutherford, M. J., Genesis of the Mars Pathfinder “sulfur-free” rock from SNC parental liquids, Geochim. Cosmochim. Acta 64, 2535–47, 2000.CrossRefGoogle Scholar
Minitti, M. E., Mustard, J. F., and Rutherford, M. J., Effects of glass content and oxidation on the spectra of SNC-like basalts: applications to Mars remote sensing, J. Geophys. Res. – Planets 107(E5), doi:10.1029/2001JE001518, 2002.CrossRefGoogle Scholar
Mischna, M. A. and Richardson, M. I., A reanalysis of water abundances in the Martian atmosphere at high obliquity, Geophys. Res. Lett. 32, L03201, doi:10.1029/2004GL021865, 2005.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E., Chemical composition of Mars. Geochim. Cosmochim. Acta 43, 1601–10, 1979.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K., Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature 412, 411–14, 2001.CrossRefGoogle ScholarPubMed
Newsom, H. E., Crumpler, L. S., Reedy, R. C., et al., Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey, J. Geophys. Res. 112(E3), 2007.CrossRefGoogle Scholar
Paige, D. A. and Keegan, K. D., Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region, J. Geophys. Res. 99, 25993–26013, 1994.CrossRefGoogle Scholar
Patino, L. C., Velbel, M. A., Price, J. R., and Wade, J. A., Trace element mobility during spheroidal weathering of basalts and andesites in Hawaii and Guatemala, Chem. Geol. 202, 343–64, 2003.CrossRefGoogle Scholar
Rao, M. N., Bogard, D. D., Nyquist, L. E., McKay, D. S., and Masarik, J., Neutron capture isotopes in the Martian regolith and implications for Martian atmospheric noble gases, Icarus 156, 352–72, 2002.CrossRefGoogle Scholar
Rao, M. N., Sutton, S. R., McKay, D. S., and Dreibus, G., Clues to Martian brines based on halogens in salts from Nakhlites and MER samples, J. Geophys. Res. 110(E12), E12S06, 2005.CrossRefGoogle Scholar
Rawlings, J. O., Pantula, S. G., and Dickey, D. A., Applied Regression Analysis: A Research Tool, 2nd edn., New York: Springer, 1998.CrossRefGoogle Scholar
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Schörghofer, N. and Aharonson, O., Stability and exchange of subsurface ice on Mars, J. Geophys. Res. E. 110(E5), E05003, doi:10.1029/2004JE002350, 2005.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L., Geologic map of the western equatorial region of Mars, USGS Misc. Inv. Ser. Map, I-1802-A (1:15,000,000), 1986.Google Scholar
Sprague, A. L., Boynton, W. V., Kerry, K. E., et al., Mars' atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, E03S02, doi:10.1029/2005JE002597, 2007.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. – Planets 111(E2), E02S11, doi:10.1029/2005JE002562, 2006.CrossRefGoogle Scholar
Staudigel, H., T. Plank, B. White, and H. U. Schmincke, Geochemical fluxes during seafloor alteration of the basaltic upper crust: DSDP Sites 417 and 418. In Subduction: Top to Bottom, Geophysical Monograph 96 (ed. Bebout, G. E.et al.), Washington, DC: American Geophysical Union, pp. 19–38, 1996.CrossRefGoogle Scholar
Taylor, G. J., Boynton, W., Brückner, J., et al., Bulk composition and early differentiation of Mars, J. Geophys. Res. 111, E03S10, doi:10.1029/2005JE002645, 2006a.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., et al., Variations in K/Th on Mars, J. Geophys. Res. 111, E03S06, doi:10.1029/2006JE002676, 2006b.Google Scholar
Taylor, S. R. and McLennan, S. M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell Scientific Publications, 312pp., 1985.Google Scholar
Trombka, J. I., Evans, L. G., Starr, R., et al., Analysis of Phobos gamma-ray spectra from the Phobos mission at Mars. Proc. Lunar Planet. Sci. Conf. 22, 23–29, 1992.Google Scholar
Upton, G. J. G. and Fingleton, B., Spatial Data Analysis by Example: Point Pattern and Quantitative Data. New York: J. Wiley, 1985.Google Scholar
Wänke, H. and Dreibus, G., Chemical composition and accretion history of the terrestrial planets. Philos. Trans. R. Soc. Lond. A 325, 545–57, 1988.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G., Chemistry and accretion history of Mars, Philos. Trans. R. Soc. Lond. A349, 285–93, 1994.CrossRefGoogle Scholar
Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I., Chemical composition of rocks and soils at the Pathfinder site, Space Sci. Rev. 96, 317–30, 2001.CrossRefGoogle Scholar
Wetherill, G. W., The provenance of the terrestrial planets, Geochem. Cosmochem. Acta 58, 4513–20, 1994.CrossRefGoogle ScholarPubMed
Wetherill, G. W. and Stewart, G. R., Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus 106, 190–209, 1993.CrossRefGoogle ScholarPubMed
Winter, John D., An Introduction to Igneous and Metamorphic Petrology, New York: Prentice Hall, 2001.Google Scholar
Wyatt, M. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M., McSween, H. Y. Jr., Tanaka, K. L., and Head, J. W. III, Global geologic context for rock types and surface alteration on Mars, Geology 32, 645–8, 2004.CrossRefGoogle Scholar
Yen, A. S., Gellert, R., Schröder, C., et al., An integrated view of the chemistry and mineralogy of martian soils, Nature 436, 49–54, 2005.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Elemental abundances determined via the Mars Odyssey GRS
    • By W. V. Boynton, Lunar and Planetary Laboratory, University of Arizona Tuscon, AZ 85721, USA, G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504, Honolulu, HI 96822, USA, S. Karunatillake, Cornell University, 514 Space Sciences Building, Ithaca, NY 14853-6801, USA, R. C. Reedy, Institute of Meteoritics, University of New Mexico, MSC03-2050 Alburquerque, NM 87131, USA, J. M. Keller, University of Arizona, 1629 E. University Blvd Tuscon, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Elemental abundances determined via the Mars Odyssey GRS
    • By W. V. Boynton, Lunar and Planetary Laboratory, University of Arizona Tuscon, AZ 85721, USA, G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504, Honolulu, HI 96822, USA, S. Karunatillake, Cornell University, 514 Space Sciences Building, Ithaca, NY 14853-6801, USA, R. C. Reedy, Institute of Meteoritics, University of New Mexico, MSC03-2050 Alburquerque, NM 87131, USA, J. M. Keller, University of Arizona, 1629 E. University Blvd Tuscon, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Elemental abundances determined via the Mars Odyssey GRS
    • By W. V. Boynton, Lunar and Planetary Laboratory, University of Arizona Tuscon, AZ 85721, USA, G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504, Honolulu, HI 96822, USA, S. Karunatillake, Cornell University, 514 Space Sciences Building, Ithaca, NY 14853-6801, USA, R. C. Reedy, Institute of Meteoritics, University of New Mexico, MSC03-2050 Alburquerque, NM 87131, USA, J. M. Keller, University of Arizona, 1629 E. University Blvd Tuscon, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.006
Available formats
×