Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T17:31:15.893Z Has data issue: false hasContentIssue false

10 - Invasions by non-indigenous species

from Part II - Impacts of human activities and pressures

Published online by Cambridge University Press:  05 June 2015

Tasman P. Crowe
Affiliation:
University College Dublin
Christopher L. J. Frid
Affiliation:
Griffith University, Queensland
Mads Solgaard Thomsen
Affiliation:
University of Canterbury
Thomas Wernberg
Affiliation:
The University of Western Australia
David Schiel
Affiliation:
University of Canterbury
Get access

Summary

Marine invaders: background

Invasions by marine non-indigenous species (NIS, see Box 10.1 for definitions) have long been recognised. For example, Carl Emil Hansen Ostenfeld described the invasion of the planktonic diatom Biddulphia (Odontella) sinensis Grev. into the North Sea in 1903, probably transported by ships (Ostenfeld, 1908), and over 50 years ago Charles Elton provided the first overview with narrative accounts of impacts associated with high profile marine invasions by oysters and cordgrass (Elton, 1958). However, marine invasions were first approached with a systematic research effort following J. Carlton's seminal work in San Francisco Bay (Carlton, 1979). Today it is recognised that marine NIS comprise a diverse group of organisms found in most marine systems. In a recent review, Hewitt and Campbell (2010) tallied almost 1800 marine NIS and cryptogenic species (Box 10.1) worldwide, dominated by arthropods (444), molluscs (350), fish (166), red algae (153), annelids (104, mainly polychaetes), cnidarians (100), heterokonts (73), bryozoans (73) and green algae (51). Although marine NIS have been introduced around the world, some bioregions are more invaded than others; the most heavily invaded regions are the Mediterranean Sea (467 NIS), Australia and New Zealand (429), the South Pacific (289), the north-east Pacific (284) and the north-east Atlantic (216) (Hewitt and Campbell, 2010). More locally, estuaries centred around metropolitan areas and with extensive shipping traffic are typically the most invaded systems. For example, c. 230, 200 and 100 marine NIS are found in San Francisco Bay, Chesapeake Bay and Port Phillip Bay, respectively (Hewitt et al., 2004; Ruiz et al., 2011). The most important marine vectors are transportation on ships (mainly hull fouling), inside ships (in ballast water, ballast sediments and sea-chests), with aquaculture (in particular associated with oyster transplantations) and via human-mediated removal of physical barriers (e.g. the Suez Canal which connects biota between the Red and the Mediterranean Seas).

Type
Chapter
Information
Marine Ecosystems
Human Impacts on Biodiversity, Functioning and Services
, pp. 274 - 332
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S. J. and Klemens, J. A. (2008). Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecology Letters, 11, 1123–1134.CrossRefGoogle ScholarPubMed
Airoldi, L. (2003). The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology: An Annual Review, 41, 161–236.Google Scholar
Albins, M. A. (2013). Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biological Invasions, 15, 29–43.CrossRefGoogle Scholar
Albins, M. A. and Hixon, M. A. (2008). Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Marine Ecology Progress Series, 367, 233–238.CrossRefGoogle Scholar
Alcoverro, T. and Mariani, S. (2004). Patterns of fish and sea urchin grazing on tropical Indo-Pacific seagrass beds. Ecography, 27, 361–365.CrossRefGoogle Scholar
Almqvist, G., Strandmark, A. and Appelberg, M. (2010). Has the invasive round goby caused new links in Baltic food webs? Environmental Biology of Fishes, 89, 79–93.CrossRefGoogle Scholar
Altieri, A., Trussell, G., Ewanchuck, P. and Bernatchez, G. (2009). Consumers control diversity and functioning of a natural marine ecosystem. PLoS Biology, 4, e5291.Google ScholarPubMed
Altieri, A. H., Silliman, B. and Bertness, M. D. (2007). Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities. American Naturalist, 169, 195–206.CrossRefGoogle Scholar
Altug, G., Gurun, S., Cardak, M., Ciftci, P. S. and Kalkan, S. (2012). The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Marine Environmental Research, 81, 35–42.CrossRefGoogle ScholarPubMed
Baldwin, J. R. and Lovvorn, J. R. (1994). Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Colombia. Marine Ecology Progress Series, 103, 119–127.CrossRefGoogle Scholar
Barbier, E. B., Hacker, S. D., Kennedy, C.et al. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193.CrossRefGoogle Scholar
Barbour, A. B., Allen, M. S., Frazer, T. K. and Sherman, K. D. (2011). Evaluating the potential efficacy of invasive lionfish (Pterois volitans) removals. PLoS ONE, 6, e19666.CrossRefGoogle ScholarPubMed
Bauer, J. (2012). Invasive species: ‘back-seat drivers’ of ecosystem change? Biological Invasions, 14, 1295–1304.CrossRefGoogle Scholar
Bell, S. S. (1991). Amphipods as insect equivalents? An alternative view. Ecology, 72, 350–354.CrossRefGoogle Scholar
Berkenbusch, K. and Rowden, A. A. (2007). An examination of the spatial and temporal generality of the influence of ecosystem engineers on the composition of associated assemblages. Aquatic Ecology, 41, 129–147.CrossRefGoogle Scholar
Berkenbusch, K., Rowden, A. A. and Myers, T. E. (2007). Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages. Journal of Experimental Marine Biology and Ecology, 341, 70–84.CrossRefGoogle Scholar
Bilio, M. and Niermann, U. (2004). Is the comb jelly really to blame for it all? Mnemiopsis leidyi and the ecological concerns about the Caspian Sea. Marine Ecology Progress Series, 269, 173–183.CrossRefGoogle Scholar
Blakeslee, A. M. H., Byers, J., Lesser, M. P. (2008). Solving cryptogenic histories using host and parasite molecular genetics: the resolution of Littorina littorea's North American origin. Molecular Ecology, 17, 3684–3696.CrossRefGoogle ScholarPubMed
Bollens, S., Cordell, J., Avent, S. and Hooff, R. (2002). Zooplankton invasions: a brief review, plus two case studies from the northeast Pacific Ocean. Hydrobiologia, 480, 87–110.CrossRefGoogle Scholar
Borenstein, M., Hedges, L. V., Higgins, J. P. T. and Rothstein, H. R. (2009). Introduction to Meta-analysis. West Sussex: John Wiley and Sons Ltd.CrossRefGoogle Scholar
Boudouresque, C. F., Lemée, R., Mari, X. and Meinesz, A. (1996). The invasive alga Caulerpa taxifolia is not a suitable diet for the sea urchin Paracentrotus lividus. Aquatic Botany, 53, 245–250.CrossRefGoogle Scholar
Briggs, J. C. (2010). Marine biology: the role of accommodation in shaping marine biodiversity. Marine Biology, 157, 2117–2126.CrossRefGoogle Scholar
Britton-Simmons, K. H. (2004). Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Marine Ecology Progress Series, 277, 61–78.CrossRefGoogle Scholar
Bulleri, F., Airoldi, L., Branca, G. M. and Abbiati, M. (2006). Positive effects of the introduced green alga, Codium fragile ssp. tomentosoides, on recruitment and survival of mussels. Marine Biology, 148, 1213–1220.CrossRefGoogle Scholar
Bulleri, F., Balata, D., Bertocci, I., Tamburello, L. and Benedetti-Cecchi, L. (2010). The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change. Ecology, 91, 2205–2212.CrossRefGoogle ScholarPubMed
Bulleri, F. and Chapman, M. G. (2010). The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology, 47, 26–35.CrossRefGoogle Scholar
Buschbaum, C., Dittmann, S., Hong, J. S.et al. (2009). Mytilid mussels: global habitat engineers in coastal sediments. Helgoland Marine Research, 63, 47–58.CrossRefGoogle Scholar
Butrón, A., Orive, E. and Madariaga, I. (2011). Potential risk of harmful algae transport by ballast waters: the case of Bilbao Harbour. Marine Pollution Bulletin, 62, 747–757.CrossRefGoogle ScholarPubMed
Byers, J. (2000). Competition between two estuarine snails: implications for invasions of exotic species. Ecology, 81, 1225–1239.CrossRefGoogle Scholar
Byers, J. E. (2002). Physical habitat attribute mediates biotic resistance to non-indigenous species invasions. Oecologia, 130, 146–156.CrossRefGoogle Scholar
Byers, J. E. (2009). Competition in marine invasions. In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives, ed. Rilov, G. and Crooks, J. A.. Heidelberg, Germany: Springer-Verlag, pp. 245–260.Google Scholar
Byers, J. E., Reichard, S., Randall, J. M.et al. (2002). Directing research to reduce the impact of nonindigenous species. Conservation Biology, 16, 630–640.CrossRefGoogle Scholar
Byers, J. E.Wright, J. T. and Gribben, P. E. (2010). Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. Ecology, 91, 1787–1798.CrossRefGoogle ScholarPubMed
Byers, J. E., Gribben, P., Yeager, C. and Sotka, E. (2012). Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biological Invasions, 14, 2587–2600.CrossRefGoogle Scholar
Cacabelos, E., Engelen, A. H., Mejia, A. and Arenas, F. (2012). Comparison of the assemblage functioning of estuary systems dominated by the seagrass Nanozostera noltii versus the invasive drift seaweed Gracilaria vermiculophylla. Journal of Sea Research, 72, 99–105.CrossRefGoogle Scholar
Cardinale, B. J., Matulich, K. L., Hooper, D. U.et al. (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98, 572–592.CrossRefGoogle ScholarPubMed
Cardinale, B. J., Srivastava, D. S., Duffy, J. E.et al. (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989–992.CrossRefGoogle ScholarPubMed
Carlton, J. T. (1979). History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. PhD dissertation, University of California, Davis.
Carlton, J. T. (1996). Biological invasions and cryptogenic species. Ecology, 77, 1653–1655.CrossRefGoogle Scholar
Casas, G., Scrosati, R. and Piriz, M. L. (2004). The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions, 6, 411–416.CrossRefGoogle Scholar
Casini, M., Lövgren, J., Hjelm, J.et al. (2008). Multi-level trophic cascades in a heavily exploited open marine ecosystem. Proceedings of the Royal Society B: Biological Sciences, 275, 1793–1801.CrossRefGoogle Scholar
Castilla, J. C., Lagos, N. A. and Cerda, M. (2004). Marine ecosystem engineering by the alien ascidian Pyura praeputialis on a mid-intertidal rocky shore. Marine Ecology Progress Series, 268, 119–130.CrossRefGoogle Scholar
Catford, J. A., Jansson, R. and Nilsson, C. (2009). Reducing redundancy in invasion ecology by integrating hypothesis into a single theoretical framework. Diversity and Distributions, 15, 22–40.CrossRefGoogle Scholar
Cebrian, E., Ballesteros, E., Linares, C. and Tomas, F. (2011). Do native herbivores provide resistance to Mediterranean marine bioinvasions? A seaweed example. Biological Invasions, 13, 1397–1408.CrossRefGoogle Scholar
Cebrian, E., Linares, C., Marschal, C. and Garrabou, J. (2012). Exploring the effects of invasive algae on the persistence of gorgonian populations. Biological Invasions, 14, 2647–2656.CrossRefGoogle Scholar
Ceccherelli, G. and Cinelli, F. (1997). Short-term effects of nutrient enrichment of the sediment and interactions between the seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. Journal of Experimental Marine Biology and Ecology, 217, 165–177.CrossRefGoogle Scholar
Ceccherelli, G. and Sechi, N. (2002). Nutrient availability in the sediment and the reciprocal effects between the native seagrass Cymodocea nodosa and the introduced green alga Caulerpa taxifolia in a Mediterranean bay. Hydrobiologia, 474, 57–66.CrossRefGoogle Scholar
Chauvenet, A. L. M., Ewen, J. G., Armstrong, D. P., Blackburn, T. M. and Pettorelli, N. (2012). Maximizing the success of assisted colonizations. Animal Conservation, 16, 161–169.Google Scholar
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L.et al. (2009). Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries, 10. 235–251.CrossRefGoogle Scholar
Connell, S. D. (2001). Urban structures as marine habitats: an experimental comparison of the composition and abundance of subtidal epibiota among pilings, pontoons and rocky reefs. Marine Environmental Research, 52, 115–125.CrossRefGoogle ScholarPubMed
Cote, I. and Green, S. J. (2012). Potential effects of climate change on a marine invasion: the importance of current context. Current Zoology, 58, 1–8.CrossRefGoogle Scholar
Cowan, D. A., Rybicki, E. P., Tuffin, M. I., Valverde, A. and Wingfield, M. J. (2013). Biodiversity: so much more than legs and leaves. South African Journal of Science, 109, 1–9.CrossRefGoogle Scholar
Crain, C. M., Kroeker, K. and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11, 1304–1315.CrossRefGoogle ScholarPubMed
Critchley, A. T., De Visscher, P. R. M. and Nienhuis, P. H. (1990). Canopy characteristics of the brown alga Sargassum muticum (Fucales, Phaeophyta) in Lake Greveling, southwest Netherlands. Hydrobiologia, 204/205, 211–217.Google Scholar
Critchley, A. T., Farnham, W. F. and Morrell, S. L. (1986). An account of the attempted control of an introduced marine alga Sargassum muticum in southern England UK. Biological Conservation, 35, 313–332.CrossRefGoogle Scholar
Crooks, J. A. (1998). Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Marine Ecology Progress Series, 162, 137–152.CrossRefGoogle Scholar
Crooks, J. A. (2002a). Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos, 97, 153–166.CrossRefGoogle Scholar
Crooks, J. A. (2002b). Predators of the invasive mussel Musculista senhousia (Mollusca: Mytilidae). Pacific Science, 56, 49–56.CrossRefGoogle Scholar
Crooks, J. A. (2009). The role of exotic marine ecosystem engineers. In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives, ed. Rilov, G. and Crooks, J. A.. Heidelberg, Germany: Springer-Verlag, pp. 287–304.Google Scholar
Crooks, J. A. and Khim, H. S. (1999). Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. Journal of Experimental Marine Biology and Ecology, 240, 53–75.CrossRefGoogle Scholar
Culver, C. S. and Kuris, M. A. (2000). The apparent eradication of a locally established introduced marine pest. Biological Invasions, 2, 245–253.CrossRefGoogle Scholar
Dafforn, K. A., Glasby, T. M. and Johnston, E. L. (2009). Links between estuarine condition and spatial distributions of marine invaders. Diversity and Distributions, 15, 807–821.CrossRefGoogle Scholar
Danovaro, R. (2003). Pollution threats in the Mediterranean Sea: an overview. Chemistry and Ecology, 19, 15–32.CrossRefGoogle Scholar
Darling, E. S. and Cote, E. S. (2008). Quantifying the evidence for ecological synergies. Ecology Letters, 11, 1278–1286.CrossRefGoogle ScholarPubMed
Daskalov, G. M., Grishin, A. N., Rodionov, S. and Mihneva, V. (2007). Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences, 104, 10518–10523.CrossRefGoogle ScholarPubMed
Davidson, T., Shanks, A. and Rumrill, S. (2010). The composition and density of fauna utilizing burrow microhabitats created by a non-native burrowing crustacean (Sphaeroma quoianum). Biological Invasions, 12, 1403–1413.CrossRefGoogle Scholar
Davidson, T. M. and de Rivera, C. E. (2010). Accelerated erosion of saltmarshes infested by the non-native burrowing crustacean Sphaeroma quoianum. Marine Ecology Progress Series, 419, 129–136.CrossRefGoogle Scholar
Davies, B., Stuart, V. and De Villiers, M. (1989). The filtration activity of a serpulid polychaete population (Ficopomatus enigmaticus (Fauvel)) and its effects on water quality in a coastal marina. Estuarine, Coastal and Shelf Science, 29, 613–620.CrossRefGoogle Scholar
Davis, M. A., Grime, J. P. and Thompsen, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology, 88, 528–534.CrossRefGoogle Scholar
Davis, R. C., Short, F. T. and Burdick, D. M. (1998). Quantifying the effects of green crab damage to eelgrass transplants. Restoration Ecology, 6, 297–302.CrossRefGoogle Scholar
DeGraaf, J. D and Tyrrell, M. C. (2004). Comparison of the feeding rates of two introduced crab species, Carcinus maenas and Hemigrapsus sanguineus, on the blue mussel, Mytilus edulis. Northeastern Naturalist, 11, 163–166.CrossRefGoogle Scholar
Demopoulos, A. W. J. and Smith, C. R. (2010) Invasive mangroves alter macrofaunal community structure and facilitate opportunistic exotics. Marine Ecology Progress Series, 404, 51–67.CrossRefGoogle Scholar
DeRivera, C. E., Ruiz, G. M., Hines, A. H. and Jivoff, P. (2005). Biotic resistance to invasion: native predator limits abundance and distribution of an introduced crab. Ecology, 86, 3364–3376.CrossRefGoogle Scholar
de Villele, X. and Verlaque, M. (1995). Changes and degradation in a Posidonia oceanica bed invaded by the introduced tropical alga Caulerpa taxifolia in the North Western Mediterranean. Botanica Marina, 38, 79–87.CrossRefGoogle Scholar
De Wit, R. and Bouvier, T. (2006). ‘Everything is everywhere, but, the environment selects’; what did Baas, Becking and Beijerinck really say? Environmental Microbiology, 8, 755–758.CrossRefGoogle ScholarPubMed
Díaz-Almela, E., Marba, N. and Duarte, C. M. (2007). Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Global Change Biology, 13, 224–235.CrossRefGoogle Scholar
Drake, L. A., Doblin, M. A and Dobbs, F. C. (2007). Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm. Marine Pollution Bulletin, 55, 333–341.CrossRefGoogle ScholarPubMed
Drake, L. A., Meyer, A. E., Forsberg, R. L.et al. (2005). Potential invasion of microorganisms and pathogens via ‘interior hull fouling’: biofilms inside ballast water tanks. Biological Invasions, 7, 969–982.CrossRefGoogle Scholar
Drake, L. A., Ruiz, G. M., Galil, B. S.et al. (2002). Microbial ecology of ballast water during a transoceanic voyage and the effects of open-ocean exchange. Marine Ecology Progress Series, 233, 13–20.CrossRefGoogle Scholar
Eastwood, M. M., Donahue, M. J. and Fowler, A. E. (2007). Reconstructing past biological invasions: niche shifts in response to invasive predators and competitors. Biological Invasions, 9, 397–407.CrossRefGoogle Scholar
Ekloef, J. S., Henriksson, R. and Kautsky, N. (2006). Effects of tropical open-water seaweed farming on seagrass ecosystem structure and function. Marine Ecology Progress Series, 325, 73–84.Google Scholar
Elton, C. S. (1958). The Ecology of Invasions by Animals and Plants. London: Mathuess.CrossRefGoogle Scholar
Emami, K., Askari, V., Ullrich, M.et al. (2012). Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry. PLoS ONE, 7:e38515.CrossRefGoogle ScholarPubMed
Engelen, A., Henriques, N., Monteiro, C. and Santos, R. (2011). Mesograzers prefer mostly native seaweeds over the invasive brown seaweed Sargassum muticum. Hydrobiologia, 669, 157–165.CrossRefGoogle Scholar
Estes, J. A. and Palmisano, J. F. (1974). Sea otters: their role in structuring nearshore communities. Science, 185, 1058–1060.CrossRefGoogle ScholarPubMed
Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine Pollution Bulletin, 50, 125–146.CrossRefGoogle ScholarPubMed
Fridley, J. D., Stachowicz, J. J., Sax, D. F.et al. (2007). The invasion paradox: reconciling pattern and process in species invasions. Ecology, 88, 3–17.CrossRefGoogle ScholarPubMed
Gennaro, P. and Piazzi, L. (2011). Synergism between two anthropic impacts: Caulerpa racemosa var. cylindracea invasion and seawater nutrient enrichment. Marine Ecology Progress Series, 427, 59–70.CrossRefGoogle Scholar
Gollan, J. R. and Wright, J. T. (2006). Limited grazing pressure by native herbivores on the invasive seaweed Caulerpa taxifolia in a temperate Australian estuary. Marine and Freshwater Research, 57, 685–694.CrossRefGoogle Scholar
Green, D. S., Boots, B. and Crowe, T. P. (2012). Effects of non-indigenous oysters on microbial diversity and ecosystem functioning. PLoS ONE, 7, e48410.CrossRefGoogle ScholarPubMed
Green, D., Rocha, C. and Crowe, T. (2013). Effects of non-indigenous oysters on ecosystem processes vary with abundance and context. Ecosystems, 16, 881–893.CrossRefGoogle Scholar
Gribben, P. E., Byers, J., Clements, M.et al. (2009a). Behavioural interactions between ecosystem engineers control community species richness. Ecology Letters, 12, 1127–1136.CrossRefGoogle ScholarPubMed
Gribben, P. E. and Wright, J. T. (2006). Sublethal effects on reproduction in native fauna: are females more vulnerable to biological invasion? Oecologia, 149, 352–361.CrossRefGoogle ScholarPubMed
Gribben, P. E., Wright, J. T., O'Connor, W. A.et al. (2009b). Reduced performance of native infauna following recruitment to a habitat-forming invasive marine alga. Oecologia, 158, 733–745.CrossRefGoogle ScholarPubMed
Grosholz, E. D. and Ruiz, G. (2009). Multitrophic effects of invasion in marine and estuarine systems. In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives, ed. Rilov, G. and Crooks, J. A.. Heidelberg, Germany: Springer-Verlag, pp. 305–324.Google Scholar
Grosholz, E. D. and Ruiz, G. M. (1996). Predicting the impact of introduced marine species: lessons from the multiple invasions of the European green crab Carcinus maenas. Biological Conservation, 78, 59–66.CrossRefGoogle Scholar
Guerra-García, J. M., Ros, M., Izquierdo, D. and Soler-Hurtado, M. M. (2012). The invasive Asparagopsis armata versus the native Corallina elongata: differences in associated peracarid assemblages. Journal of Experimental Marine Biology and Ecology, 416/417, 121–128.Google Scholar
Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79–99.CrossRefGoogle Scholar
Hallegraeff, G. M. (2010). Ocean climate change, phytoplankton community responses and harmful algal blooms: a formidable predictive challenge. Journal of Phycology, 46, 220–235.CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. and Slobodkin, L. S. (1960). Community structure, population control, and competition. American Naturalist, 94, 421–425.CrossRefGoogle Scholar
Harris, L. G. and Jones, A. C. (2005). Temperature, herbivory and epibiont acquisition as factors controlling the distribution and ecological role of an invasive seaweed. Biological Invasions, 7, 913–924.CrossRefGoogle Scholar
Hewitt, C. L. and Campbell, M. (2010). The relative contribution of vectors to the introduction and translocation of marine invasive species. Australian Department of Agriculture, Fisheries and Forestry, Canberra, 56.
Hewitt, C. L., Campbell, M. L., McEnnulty, Fet al. (2005). Efficacy of physical removal of a marine pest: the introduced kelp Undaria pinnatifida in a Tasmanian Marine Reserve. Biological Invasions, 7, 251–263.CrossRefGoogle Scholar
Hewitt, C. L., Campbell, M. L., Thresher, R.E.et al. (2004). Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Marine Biology, 144, 183–202.Google Scholar
Hierro, J. L., Maron, J. L. and Callaway, R. M. (2005). A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15.CrossRefGoogle Scholar
Hoeffle, H., Thomsen, M. S. and Holmer, M. (2011). High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuarine Coastal Shelf Science, 92, 35–46.Google Scholar
Hoeffle, H., Wernberg, T., Thomsen, M. S. and Holmer, M. (2012). Drift algae, an invasive snail and elevated temperature reduce the ecological performance of a warm-temperate seagrass via additive effects. Marine Ecology Progress Series, 450, 67–80.Google Scholar
Hooper, D. U., Adair, E. C., Cardinale, B. J.et al. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105–108.CrossRefGoogle ScholarPubMed
Hooper, D. U., Chapin, F. S., Ewel, J. J.et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35.CrossRefGoogle Scholar
Hopkins, G. A., Forrest, B. M., Jiang, W., Gardner, J. P. A. (2011). Successful eradication of a non-indigenous marine bivalve from a subtidal soft-sediment environment. Journal of Applied Ecology, 48, 424–431.CrossRefGoogle Scholar
Hunt, L. (2009). Results of an attempt to control and eradicate Undaria pinnatifida in Southland, New Zealand, April 1997-November 2004. New Zealand. Dept. of Conservation, Department of Conservation, 48.
Huston, M. A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge: Cambridge University Press.Google Scholar
Ibrahim, A. M. and El-Naggar, M. M. (2012). Ballast water review: impacts, treatments and management. Middle-East Journal of Scientific Research, 12, 976–984.Google Scholar
Janiak, D. S. and Whitlatch, R. B. (2012). Epifaunal and algal assemblages associated with the native Chondrus crispus (Stackhouse) and the non-native Grateloupia turuturu (Yamada) in eastern Long Island Sound. Journal of Experimental Marine Biology and Ecology, 413, 38–44.CrossRefGoogle Scholar
Jaubert, J. M., Chisholm, J. R. M., Ducrot, D.et al. (1999). No deleterious alterations in Posidonia beds in the Bay of Menton (France) eight years after Caulerpa taxifolia colonization. Journal of Phycology, 35, 1113–1119.CrossRefGoogle Scholar
Jaubert, J. M., Chisholm, J. R. M., Minghelli-Roman, A.et al. (2003). Re-evaluation of the extent of Caulerpa taxifolia development in the northern Mediterranean using airborne spectrographic sensing. Marine Ecology Progress Series, 263, 75–82.CrossRefGoogle Scholar
Kideys, A. E. (2002). The comb jelly Mnemiopsis leidyi in the Black Sea. In Invasive Aquatic Species of Europe. Distribution, Impact and Management, ed. Leppakoski, E.Gollasch, S. and Olenin, S.. Dordrecht, The Netherlands: Kluwer Academic Publisher, pp. 56–61.Google Scholar
Klein, J. C. and Verlaque, M. (2011). Experimental removal of the invasive Caulerpa racemosa triggers partial assemblage recovery. Journal of the Marine Biological Association of the UK, 91, 117–125.CrossRefGoogle Scholar
Kochmann, J., Buschbaum, C., Volkenborn, N. and Reise, K. (2008). Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology, 364, 1–10.CrossRefGoogle Scholar
Kornis, M. S., Mercado-Silva, N. and Vander Zanden, M. J. (2012). Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology, 80, 235–285.CrossRefGoogle ScholarPubMed
Kremer, L. P. and Rocha, R. M. (2011). The role of Didemnum perlucidum F. Monniot, 1983 (Tunicata, Ascidiacea) in a marine fouling community. Aquatic Invasions, 6, 441–449.CrossRefGoogle Scholar
Kristensen, E., Hansen, T., Delefosse, M., Banta, G. T. and Quintana, C. O. (2011). Contrasting effects of the polychaetes Marenzelleria viridis and Nereis diversicolor on benthic metabolism and solute transport in sandy coastal sediment. Marine Ecology Progress Series, 425, 125–139.CrossRefGoogle Scholar
Kulhanek, S. A., Ricciardi, A. and Leung, B. (2011). Is invasion history a useful tool for predicting the impacts of the world's worst aquatic invasive species? Ecological Applications, 21. 189–202.CrossRefGoogle ScholarPubMed
Kuussaari, M., Bommarco, R. K. R, Heikkinen, R. K.et al. (2009). Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 24, 564–571.CrossRefGoogle ScholarPubMed
Landsberg, J. H. (2002). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10, 113–390.CrossRefGoogle Scholar
Lang, A. C. and Buschbaum, C. (2010). Facilitative effects of introduced Pacific oysters on native macroalgae are limited by a secondary invader, the seaweed Sargassum muticum. Journal of Sea Research, 63, 119–128.CrossRefGoogle Scholar
Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. and Pérez, T. (2010). Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends in Ecology and Evolution, 25, 250–260.CrossRefGoogle ScholarPubMed
Lesser, M. and Slattery, M. (2011). Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biological Invasions, 13, 1855–1868.CrossRefGoogle Scholar
Levin, P. S., Coyer, J. A., Petrik, R. and Good, T. P. (2002). Community-wide effects of nonindigenous species on temperate rocky reefs. Ecology, 83, 3182–3193.CrossRefGoogle Scholar
Levine, J. (1999). Indirect facilitation: evidence and predictions from a riparian community. Ecology, 80, 1762–1769.CrossRefGoogle Scholar
Levine, J. M., Adler, P. B. and Yelenik, S. G. (2004). A meta-analysis of biotic resistance to exotic plant invasions. Ecology Letters, 7, 975–989.CrossRefGoogle Scholar
Levine, J. M., D'Antonio, C. M., Dukes, J. S.et al. (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 775–781.CrossRefGoogle ScholarPubMed
Linares, C., Cebrian, E. and Coma, R. (2012). Effects of turf algae on recruitment and juvenile survival of gorgonian corals. Marine Ecology Progress Series, 452, 81–88.CrossRefGoogle Scholar
Litchman, E. (2010). Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecology Letters, 13, 1560–1572.CrossRefGoogle ScholarPubMed
Lotze, H. K., Lenihan, H. S., Bourque, B. J.et al. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312, 1806–1809.CrossRefGoogle ScholarPubMed
Lubchenco, J. (1978). Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. The American Naturalist, 112, 23–39.CrossRefGoogle Scholar
Lubchenco, J. (1983). Littorina and Fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology, 64, 1116–1123.CrossRefGoogle Scholar
Lubchenco, J. and Menge, B. A. (1978). Community development and persistence in a low rocky intertidal zone. Ecological Monographs, 59, 67–94.Google Scholar
MacDonald, J. A., Roudez, R., Glover, T. and Weis, J. S. (2007). The invasive green crab and Japanese shore crab: behavioral interactions with a native crab species, the blue crab. Biological Invasions, 9, 837–848.CrossRefGoogle Scholar
MacDougall, A. S. and Turkington, R. (2005). Are invasive species the drivers or passengers of change in degraded ecosystems? Ecology, 86. 42–55.CrossRefGoogle Scholar
Maljković, A., Leeuwen, T. E. and Cove, S. N. (2008). Predation on the invasive red lionfish, Pterois volitans (Pisces: Scorpaenidae), by native groupers in the Bahamas. Coral Reefs, 27, 501.CrossRefGoogle Scholar
Markert, A., Wehrmann, A. and Kroncke, I. (2010). Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biological Invasions, 12, 15–32.CrossRefGoogle Scholar
McCarthy, S. A. and Khambaty, F. M. (1994). International dissemination of epidemic Vibrio cholerae by cargo ship ballast and other nonpotable waters. Applied and Environmental Microbiology, 60, 2597–2601.Google ScholarPubMed
McClanahan, T. R., Kamukuru, A. T., Muthiga, N. A., Yebio, M. and Obura, D. (1996). Effect of sea urchin reductions on algae, coral, and fish populations. Conservation Biology, 10, 136–154.CrossRefGoogle Scholar
McKinnon, J. G., Gribben, P. E., Davis, A. R., Jolley, D. F. and Wright, J. T. (2009). Differences in soft-sediment macrobenthic assemblages invaded by Caulerpa taxifolia compared to uninvaded habitats. Marine Ecology Progress Series, 380, 59–71.CrossRefGoogle Scholar
Meinesz, A. (1999). Killer algae: the true tale of a biological invasion. Chicago, IL: University of Chicago Press.
Miller, A. W., Chang, A. L., Cosentino-Manning, N. and Ruiz, G. M. (2004). New record and eradication of the northern Atlantic alga Ascophyllum nodosum (Phaeophyceae) from San Francisco Bay, California, USA. Journal of Phycology, 40, 1028–1031.Google Scholar
Monteiro, C., Engelen, A. H. and Santos, R. O. (2009). Macro- and mesoherbivores prefer native seaweeds over the invasive brown seaweed Sargassum muticum: a potential regulating role on invasions. Marine Biology, 156, 2505–2515.CrossRefGoogle Scholar
Morris, T. L. (2013). Evaluation of ships’ ballast water as a vector for transfer of pathogenic bacteria to marine protected areas in the Gulf of Mexico. Master's thesis, Texas A&M University.
Neira, C., Grozholz, E. D., Levin, L. A. and Blake, R. (2006). Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid. Ecological Applications, 16, 1391–1404.CrossRefGoogle ScholarPubMed
Neira, C., Levin, L. A., Grosholz, E. D. and Mendoza, G. (2007). Influence of invasive Spartina growth stages on associated macrofaunal communities. Biological Invasions, 9, 975–993.CrossRefGoogle Scholar
Nejrup, L., Pedersen, M. and Vinzent, J. (2012). Grazer avoidance may explain the invasiveness of the red alga Gracilaria vermiculophylla in Scandinavian waters. Marine Biology, 159, 1703–1712.CrossRefGoogle Scholar
Nejrup, L. B. and Pedersen, M. F. (2010). Growth and biomass development of the introduced red alga Gracilaria vermiculophylla is unaffected by nutrient limitation and grazing. Aquatic Biology, 10, 249–259.CrossRefGoogle Scholar
Neverauskas, V. (2005). Eradication of Caulerpa taxifolia from West Lakes, South Australia, using urban stormwater. Abstracts, Conference Programme, 4th International Conference on Marine Bioinvasion, Wellington, New Zealand22–26 August, 151.Google Scholar
Norkko, J., Reed, D. C., Timmermann, K.et al. (2012). A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology, 18, 422–434.CrossRefGoogle Scholar
Nyberg, C. D., Thomsen, M. S. and Wallentinus, I. (2009). Flora and fauna associated with the introduced red alga Gracilaria vermiculophylla. European Journal of Phycology, 44, 395–403.CrossRefGoogle Scholar
Nylund, G. M., Weinberger, F., Rempt, M. and Pohnert, G. (2011). Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS ONE, 6, e29359.CrossRefGoogle ScholarPubMed
O'Leary, J. K. and McClanahan, T. R. (2010). Trophic cascades result in large-scale coralline algae loss through differential grazer effects. Ecology, 91, 3584–3597.CrossRefGoogle ScholarPubMed
Oguz, T., Fach, B. and Salihoglu, B. (2008). Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. Journal of Plankton Research, 30, 1385–1397.CrossRefGoogle Scholar
Olabarria, C., Rodil, I. F., Incera, M. and Troncoso, J. S. (2009). Limited impact of Sargassum muticum on native algal assemblages from rocky intertidal shores. Marine Environmental Research, 67, 153–158.CrossRefGoogle ScholarPubMed
Olden, J. D. and Rooney., T. P. (2006). On defining and quantifying biotic homogenization. Global Ecology and Biogeography, 15, 113–120.CrossRefGoogle Scholar
Ostenfeld, C. H. (1908). On the immigration of Biddulphia sinensis Grev. and its occurrence in the North Sea during 1903–1907 and on its use for the study of the direction and rate of flow of the currents. Meddelelser fra Kommissionen for Danmarks Fiskeri- og Havundersøgelser: Serie Plankton, 6, 1–44.Google Scholar
Pacciardi, L., de Biasi, N. M. and Piazzi, L. (2011). Effects of Caulerpa racemosa invasion on soft-bottom assemblages in the Western Mediterranean Sea. Biological Invasions, 13, 2677–2690.CrossRefGoogle Scholar
Padilla, D. K. (2010). Context-dependent impacts of non-native ecosystem engineers, the Pacific oyster Crassostrea gigas. Integrative and Comparative Biology, 50, 213–225.CrossRefGoogle ScholarPubMed
Paine, R. T. (1966). Food web complexity and species diversity. American Naturalist, 100, 65–75.CrossRefGoogle Scholar
Parker, I. M., Simberloff, D., Lonsdale, W. M.et al. (1999). Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions, 1, 3–19.CrossRefGoogle Scholar
Parker, J. D. and Hay, M. E. (2005). Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecological Letters, 8, 959–967.CrossRefGoogle Scholar
Parks, J. R. (2006). Shorebird use of smooth cordgrass (Spartina alterniflora) meadows in Willapa Bay, Washington. MSc thesis, Environmental Studies, The Evergreen State College.
Pedersen, M. F., Stæhr, P. A., Wernberg, T. and Thomsen, M. (2005). Biomass dynamics of exotic Sargassum muticum and native Halidrys siliquosa in Limfjorden, Denmark: implications of species replacements on turnover rates. Aquatic Botany, 83, 31–47.CrossRefGoogle Scholar
Petchey, O. L., McPhearson, P. T., Casey, T. M. and Morin, P. J. (1999). Environmental warming alters food-web structure and ecosystem function. Nature, 402, 69–72.CrossRefGoogle Scholar
Petersen, J. K., Hansen, J. W., Laursen, M. B.et al. (2008). Regime shift in a coastal marine ecosystem. Ecological Applications, 18, 497–510.CrossRefGoogle Scholar
Piazzi, L., Balata, D., Ceccherelli, G. and Cinellia, F. (2005). Interactive effect of sedimentation and Caulerpa racemosa var. cylindracea invasion on macroalgal assemblages in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 64, 467–474.CrossRefGoogle Scholar
Piazzi, L. and Ceccherelli, G. (2006). Persistence of biological invasion effects: recovery of macroalgal assemblages after removal of Caulerpa racemosa var. cylindracea. Estuarine Coastal and Shelf Science, 68, 455–461.CrossRefGoogle Scholar
Piola, R. F. and Johnston, E. L. (2006). Differential resistance to extended copper exposure in four introduced bryozoans. Marine Ecology Progress Series, 311, 103–114.CrossRefGoogle Scholar
Piola, R. F. and Johnston, E. L. (2008). Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Diversity and Distributions, 14, 329–342.Google Scholar
Posey, M. H. (1988). Community changes associated with the spread of an introduced seagrass, Zostera japonica. Ecology, 69, 974–983.CrossRefGoogle Scholar
Powell, K. I., Chase, J. M. and Knight, T. M. (2011). A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany, 98, 539–548.CrossRefGoogle ScholarPubMed
Pyšek, P., Jarošík, V., Hulme, P. J.et al. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725–1737.CrossRefGoogle Scholar
Raitsos, D. E., Beaugrand, G., Georgopoulos, D.et al. (2010). Global climate change amplifies the entry of tropical species into the eastern Mediterranean Sea. Limnology and Oceanography, 55, 1478–1484.CrossRefGoogle Scholar
Read, G. B., Inglis, G., Stratford, P. and Ahyong, S. T. (2011). Arrival of the alien fanworm Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae) in two New Zealand harbours. Aquaculture, 6, 273–279.Google Scholar
Reusch, T. B. H. and Williams, S. L. (1998). Variable response of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia, 113, 428–441.CrossRefGoogle ScholarPubMed
Reynolds, L. K., Carr, L. A. and Boyer, K. E. (2012). A non-native amphipod consumes eelgrass inflorescences in San Francisco Bay. Marine Ecology Progress Series, 451, 107–118.CrossRefGoogle Scholar
Ricciardi, A. and Atkinson, S. K. (2004). Distinctiveness magnifies the impact of biological invaders in aquatic ecosystems. Ecology Letters, 7, 781–784.CrossRefGoogle Scholar
Ricciardi, A. and Simberloff, D. (2009). Assisted colonization is not a viable conservation strategy. Trends in Ecology and Evolution, 24, 248–253.CrossRefGoogle Scholar
Richardson, D. M., Pysek, P., Rejmánek, M.et al. (2000). Naturalization and invasion of plants: concepts and definitions. Diversity and Distributions, 6, 93–107.CrossRefGoogle Scholar
Rilov, G. (2009). Predator-prey interactions of marine invaders. In Biological Invasions in Marine Ecosystems: Ecological, Management, and Geographic Perspectives, ed. Rilov, G. and Crooks, J. A.. Heidelberg, Germany: Springer-Verlag, pp. 261–285.CrossRefGoogle Scholar
Rodriguez, L. F. (2006). Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biological Invasions, 8, 927–939.CrossRefGoogle Scholar
Roscher, C., Temperton, V. M., Scherer-Lorenzen, M.et al. (2005) Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecology Letters, 8, 419–429.CrossRefGoogle Scholar
Rosenberg, M. S., Adams, D. C. and Gurevitch, J. (2000). Metawin: Statistical Software for Meta-analysis. Sunderland, MA: Sinauer Associates.Google Scholar
Rossong, M. A., Williams, P. J., Comeau, M., Mitchell, S. C, and Apaloo, J. (2006). Agonistic interactions between the invasive green crab, Carcinus maenas (Linnaeus) and juvenile American lobster, Homarus americanus (Milne Edwards). Journal of Experimental Marine Biology and Ecology, 329, 281–288.CrossRefGoogle Scholar
Rudnick, D. A., Chan, V. and Resh, V. H. (2005). Morphology and impacts of the burrows of the Chinese mitten crab, Eriocheir sinensis H. Milne Edwards (Decapoda, Grapsoidea), in south San Francisco Bay, California, USA. Crustaceana, 78, 787–807.CrossRefGoogle Scholar
Ruesink, J., Hong, J.-S., Wisehart, L.et al. (2010). Congener comparison of native (Zostera marina) and introduced (Z. japonica) eelgrass at multiple scales within a Pacific Northwest estuary. Biological Invasions, 12, 1773–1789.CrossRefGoogle Scholar
Ruesink, J. L. (2007). Biotic resistance and facilitation of a non-native oyster on rocky shores. Marine Ecology Progress Series, 331, 1–9.CrossRefGoogle Scholar
Ruesink, J. L., Feist, B. E., Harvey, C. J.et al. (2006). Changes in productivity associated with four introduced species: ecosystem transformation of a ‘pristine’ estuary. Marine Ecology Progress Series, 311, 203–215.CrossRefGoogle Scholar
Ruiz, G. M., Rawlings, T. K., Dobbs, F. C.et al. (2000). Global spread of microorganisms by ships. Nature, 408, 49–50.CrossRefGoogle ScholarPubMed
Ruiz, G. M., Fofonoff, P. W., Steves, B., Foss, S. F. and Shiba, S. N. (2011). Marine invasion history and vector analysis of California: a hotspot for western North America. Diversity and Distributions, 17, 362–373.CrossRefGoogle Scholar
Sánchez, I. and Fernández, C. (2005). Impact of the invasive seaweed Sargassum muticum (Phaeophyta) on an intertidal macroalgal assemblage. Journal of Phycology, 41, 923–930.Google Scholar
Sand-Jensen, K. and Borum, J. (1991). Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany, 41, 137–175.CrossRefGoogle Scholar
Sandler, R. (2010). The value of species and the ethical foundations of assisted colonization. Conservation Biology, 24, 424–431.CrossRefGoogle ScholarPubMed
Saunders, M. and Metaxas, A. (2008). High recruitment of the introduced bryozoan Membranipora membranacea is associated with kelp bed defoliation in Nova Scotia, Canada. Marine Ecology Progress Series, 369, 139–151.CrossRefGoogle Scholar
Schaffelke, B. and Hewitt, C. L. (2007). Impacts of introduced seaweeds. Botanica Marina, 50. 397–417.CrossRefGoogle Scholar
Scheibling, R. E. and Anthony, S. X. (2001). Feeding, growth and reproduction of sea urchins (Strongylocentrotus droebachiensis) on single and mixed diets of kelp (Laminaria spp.) and the invasive alga Codium fragile spp. tometosoides. Marine Biology, 139, 139–146.Google Scholar
Scheibling, R. E., Lyons, D. A. and Sumi, C. B. T. (2008). Grazing of the invasive alga Codium fragile ssp. tomentosoides by the common periwinkle Littorina littorea: effects of thallus size, age and condition. Journal of Experimental Marine Biology and Ecology, 355, 103–113.CrossRefGoogle Scholar
Scherer-Lorenzen, M. (2005). Biodiversity and ecosystem functioning: basic principles. Biodiversity: structure and function. Encyclopedia of Life Support Systems (EOLSS), developed under the Auspices of the UNESCO. Oxford: Eolss Publishers. Available at: http://www.eolss.net.Google Scholar
Schlaepfer, M. A., Sax, D. F. and Olden, J. D. (2011). The potential conservation value of non-native species. Conservation Biology, 25, 428–437.CrossRefGoogle ScholarPubMed
Schmidt, A. L. and Scheibling, R. E. (2006). A comparison of epifauna and epiphytes on native kelps (Laminaria species) and an invasive alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada Botanica Marina, 49, 315–330.Google Scholar
Schmitz, O. J., Post, E., Burns, C. E. and Johnston, K. M. (2003). Ecosystem responses to global climate change: moving beyond color mapping. Bioscience, 53, 1199–1205.CrossRefGoogle Scholar
Schulze, E. D. (1994). Biodiversity and Ecosystem Function. Heidelberg, Germany: Springer.Google Scholar
Seddon, P. J. (2010). From reintroduction to assisted colonization: moving along the conservation translocation spectrum. Restoration Ecology, 18, 796–802.CrossRefGoogle Scholar
Seddon, P. J., Price, M. S., Launay, F.et al. (2011). Frankenstein ecosystems and 21st century conservation agendas: reply to Oliveira-Santos and Fernandez. Conservation Biology, 25, 212–212.CrossRefGoogle ScholarPubMed
Shurin, J. B., Borer, E. T., Seabloom, E. W.et al. (2005). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5, 785–791.Google Scholar
Simberloff, D. (2011). How common are invasion-induced ecosystem impacts? Biological Invasions, 13, 1255–1268.CrossRefGoogle Scholar
Simberloff, D. and Von Holle, B. (1999). Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions, 1, 21–32.CrossRefGoogle Scholar
Sjotun, K., Eggereide, S. F. and Hoisaeter, T. (2007). Grazer-controlled recruitment of the introduced Sargassum muticum (Phaeophycae, Fucales) in northern Europe. Marine Ecology Progress Series, 342, 127–138.CrossRefGoogle Scholar
Sorte, C. J. B., Ibáñez, I., Blumenthal, D. M.et al. (2012). Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecology Letters, 16, 261–270.Google Scholar
Sousa, R., Gutierrez, J. L. and Aldridge, D. C. (2009). Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions, 11, 2367–2385.CrossRefGoogle Scholar
Stachowicz, J. J. and Byrnes, J. E. (2006). Species diversity, invasion success, and ecosystem functioning: disentangling the influence of resource competition, facilitation, and extrinsic factors. Marine Ecology Progress Series, 311, 251–262.CrossRefGoogle Scholar
Stachowicz, J. J., Whitlatch, R. B. and Osman, R. W. (1999). Species diversity and invasion resistance in a marine ecosystem. Science, 286, 1577–1579.CrossRefGoogle Scholar
Stachowicz, J. J., Fried, H., Osman, R. W. and Whitlatch, R. B. (2002a). Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology, 83, 2575–2590.CrossRefGoogle Scholar
Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B. and Osman, R. W. (2002b). Linking climate change and biological invasions: ocean warming facilitates nonindigenous species invasions. PNAS (USA), 99, 15497–15500.CrossRefGoogle ScholarPubMed
Stachowicz, J. J., Bruno, J. F. and Duffy, J. E. (2007). Understanding the effects of marine biodiversity on communities and ecosystems. Annual Review of Ecology, Evolution, and Systematics, 38, 739–766.CrossRefGoogle Scholar
Staehr, P. A., Pedersen, M. F., Thomsen, M. S., Wernberg, T. and Krause-Jensen, D. (2000). Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology Progress Series, 207, 79–88.CrossRefGoogle Scholar
Steffani, C. N. and Branch, G. M. (2005). Mechanisms and consequences of competition between an alien mussel, Mytilus galloprovincialis, and an indigenous limpet, Scutellastra argenvillei. Journal of Experimental Marine Biology and Ecology, 317, 127–142.CrossRefGoogle Scholar
Strayer, D. L. (2012). Eight questions about invasions and ecosystem functioning. Ecology Letters, 15, 1199–1210.CrossRefGoogle ScholarPubMed
Strayer, D. L., Eviner, V. T., Jeschke, J. M. and Pace, M. L. (2006). Understanding the long-term effects of species invasions. Trends in Ecology and Evolution, 21, 645–651.CrossRefGoogle ScholarPubMed
Strong, J. A., Dring, M. J. and Maggs, C. A. (2006). Colonisation and modification of soft substratum habitats by the invasive macroalga Sargassum muticum. Marine Ecology Progress Series, 321, 87–97.CrossRefGoogle Scholar
Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. and Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.CrossRefGoogle ScholarPubMed
Thieltges, D. W., Reise, K., Prinz, K. and Jensen, K. T. (2009). Invaders interfere with native parasite–host interactions. Biological Invasions, 11, 1421–1429.CrossRefGoogle Scholar
Thomsen, M. S. (2010). Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed. Aquatic Invasions, 5, 341–346.CrossRefGoogle Scholar
Thomsen, M. S. and McGlathery, K. J. (2006). Effects of accumulations of sediments and drift algae on recruitment of sessile organisms associated with oyster reefs. Journal of Experimental Marine Biology and Ecology, 328, 22–34.CrossRefGoogle Scholar
Thomsen, M. S. and McGlathery, K. J. (2007). Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon. Biological Invasions, 9, 499–513.CrossRefGoogle Scholar
Thomsen, M. S., Gurgel, C. F. D., Fredericq, S. and McGlathery, K. J. (2006a). Gracilaria vermiculophylla (Rhodophyta, Gracilariales) in Hog Island Bay, Virginia: a cryptic alien and invasive macroalga and taxonomic correction. Journal of Phycology, 42, 139–141.CrossRefGoogle Scholar
Thomsen, M. S., McGlathery, K. J. and Tyler, A. C. (2006b). Macroalgal distribution patterns in a shallow, soft-bottom lagoon, with emphasis on the nonnative Gracilaria vermiculophylla and Codium fragile. Estuaries and Coasts, 29, 470–478.CrossRefGoogle Scholar
Thomsen, M. S., Wernberg, T., Stæhr, P. A. and Pedersen, M. F. (2006c). Spatio-temporal distribution patterns of the invasive macroalga Sargassum muticum within a Danish Sargassum-bed. Helgoland Marine Research, 60, 50–58.CrossRefGoogle Scholar
Thomsen, M. S., Stæhr, P., Nyberg, C. D.et al. (2007). Gracilaria vermiculophylla in northern Europe, with focus on Denmark, and what to expect in the future. Aquatic Invasions, 2, 83–94.Google Scholar
Thomsen, M. S., Adam, P. and Silliman, B. (2009a). Anthropogenic threats to Australasian coastal salt marshes. In Anthropogenic Modification of North American Salt Marshes, ed. Silliman, B. R., Bertness, M. D., Strong, D.. Oakland, CA: University of California Press, pp. 361–390.Google Scholar
Thomsen, M. S., McGlathery, K. J., Schwarzschild, A. and Silliman, B. R. (2009b). Distribution and ecological role of the non-native macroalga Gracilaria vermiculophylla in Virginia salt marshes. Biological Invasions, 11, 2303–2316.CrossRefGoogle Scholar
Thomsen, M. S., Wernberg, T., Tuya, F. and Silliman, B. R. (2009c). Evidence for impacts of non-indigenous macroalgae: a meta-analysis of experimental field studies. Journal of Phycology, 45, 812–819.CrossRefGoogle Scholar
Thomsen, M. S., Wernberg, T., Altieri, A.et al. (2010a). Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integrative and Comparative Biology, 50, 158–175.CrossRefGoogle ScholarPubMed
Thomsen, M. S., Wernberg, T., Tuya, F. and Silliman, B. R. (2010b). Ecological performance and possible origin of a ubiquitous but under-studied gastropod. Estuarine Coastal and Shelf Science, 87, 501–509.CrossRefGoogle Scholar
Thomsen, M. S., Olden, J. D., Wernberg, T., Griffin, J. N. and Silliman, B. R. (2011a). A broad framework to organize and compare ecological invasion impacts. Environmental Research, 111, 899–908.CrossRefGoogle ScholarPubMed
Thomsen, M. S., Wernberg, T., Olden, J. D., Griffin, J. N. and Silliman, B. R. (2011b). A framework to study the context-dependent impacts of marine invasions. Journal of Experimental Marine Biology and Ecology, 400, 322–327.CrossRefGoogle Scholar
Thomsen, M. S., de Bettignies, T., Wernberg, T., Holmer, M. and Debeuf, B. (2012a). Harmful algae are not harmful to everyone. Harmful Algae, 16, 74–80.CrossRefGoogle Scholar
Thomsen, M. S., Wernberg, T., Engelen, A. H.et al. (2012b). A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PLoS ONE, 7, e28595.CrossRefGoogle ScholarPubMed
Thomsen, M. S., Staehr, P. A., Nejrup, L. B. and Schiel, D. R. (2013). Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquatic Invasions, 8, 1–13.CrossRefGoogle Scholar
Thomsen, M. S., Byers, J. E., Schiel, D. R.et al. (2014). Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Marine Ecology Progress Series, 495, 39–47.CrossRefGoogle Scholar
Thornber, C. S., Kinlan, B. P., Graham, M. H. and Stachowicz, J. J. (2004). Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Marine Ecology Progress Series, 268, 69–80.CrossRefGoogle Scholar
Thuiller, W., Richardson, D. M. and Midgley, G. F. (2007). Will climate change promote alien plant invasions? Biological Invasions, Ecological Studies, 193, 197–211.Google Scholar
Thyrring, J., Thomsen, M. S. and Wernberg, T. (2013). Large-scale facilitation of a sessile community by an invasive habitat-forming snail. Helgoland Marine Research, 67, 789–794.CrossRefGoogle Scholar
Tilman, D., May, R. M., Lehman, C. L. and Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature, 371, 65–66.CrossRefGoogle Scholar
Tomas, F., Cebrian, E. and Ballesteros, E. (2011). Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuarine, Coastal and Shelf Science, 92, 27–34.CrossRefGoogle Scholar
Torchin, M. E., Lafferty, K. D. and Kuris, A. M. (2002). Parasites and marine invasions. Parasitology, 124, 137–151.CrossRefGoogle Scholar
Tronstad, M., Hall, R. O., Koel, T. M. and Gerow, K. G. (2010). Introduced lake trout produced a four-level trophic cascade in Yellowstone Lake. Transactions of the American Fisheries Society, 139, 1536–1550.CrossRefGoogle Scholar
Trowbridge, C. D (2002). Local elimination of Codium fragile ssp. tomentosoides: indirect evidence of sacoglossan herbivory. Journal of the Marine Biological Association of the UK, 82, 1029–1030.CrossRefGoogle Scholar
Trowbridge, C. D. and Todd, C. D. (2001). Host-plant change in marine specialist herbivores: sacoglossan sea slugs on introduced macroalgae. Ecological Monographs, 71, 219–243.CrossRefGoogle Scholar
Trussell, G., Ewanchuck, P. and Bertness, M. D. (2002). Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecology Letters, 5. 241–245.CrossRefGoogle Scholar
Trussell, G., Ewanchuk, P., Bertness, M. D., Silliman, B. R. (2004). Trophic cascades in rocky shore tide pools: distinguishing lethal and non-lethal effects. Oecologia, 139, 427–432.CrossRefGoogle Scholar
Tsai, C., Yang, S., Trimble, A. C. and Ruesink, J. L. (2010). Interactions between two introduced species: Zostera japonica (dwarf eelgrass) facilitates itself and reduces condition of Ruditapes philippinarum (Manila clam) on intertidal mudflats. Marine Biology, 157, 1929–1936.CrossRefGoogle Scholar
Tyler, A. C. and McGlathery, K. J. (2006). Uptake and release of nitrogen by the macroalgae Gracilaria vermiculophylla (Rhodophyta). Journal of Phycology, 42, 515–525.CrossRefGoogle Scholar
Tyler, A. C., McGlathery, K. J. and Macko, S. A. (2005). Uptake of urea and amino acids by the macroalgae Ulva lactuca (Chlorophyta) and Gracilaria vermiculophylla (Rhodophyta). Marine Ecology Progress Series, 294, 161–172.CrossRefGoogle Scholar
Valentine, J. P. and Johnson, C. R. (2005). Persistence of the exotic kelp Undaria pinnatifida does not depend on sea urchin grazing. Marine Ecology Progress Series, 285, 43–55.CrossRefGoogle Scholar
Valentine, J. P., Magierowski, R. H. and Johnson, C. R. (2007). Mechanisms of invasion: establishment, spread and persistence of introduced seaweed populations. Botanica Marina, 50, 351–360.CrossRefGoogle Scholar
Viejo, R. M. (1997). The effects of colonization by Sargassum muticum on tidepool macroalgal assemblages. Journal of the Marine Biological Association of the UK, 77, 325–340.CrossRefGoogle Scholar
Viejo, R. M. (1999). Mobile epifauna inhabiting the invasive Sargassum muticum and two local seaweeds in northern Spain. Aquatic Botany, 64, 131–149.CrossRefGoogle Scholar
Vilà, M., Basnou, C., Pysek, P.et al. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Frontiers in Ecology and the Environment, 8, 135–144.CrossRefGoogle Scholar
Vilà, M., Espinar, J. L., Hejda, M., et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702–708.CrossRefGoogle ScholarPubMed
Wallentinus, I. and Nyberg, C. D. (2007). Introduced marine organisms as habitat modifiers. Marine Pollution Bulletin, 55, 323–332.CrossRefGoogle ScholarPubMed
Walther, G. R., Roques, A., Hulme, P. E.et al. (2009). Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution, 24, 686–693.CrossRefGoogle Scholar
Wernberg, T., Russell, B., Thomsen, M. S.et al. (2011). Seaweeds in retreat from ocean warming. Current Biology, 21, 1–5.CrossRefGoogle ScholarPubMed
Wernberg, T., Russell, B. D., Thomsen, M. S., Connell, S. D. (2012a). Marine biodiversity and climate change. In Global Environmental Change, ed. Freedman, B.. Heidelberg, Germany: Springer, pp. 181–187.Google Scholar
Wernberg, T., Smale, D. A., Tuya, F.et al. (2012b). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change advance online publication.
Wernberg, T., Thomsen, M. S., Stæhr, P. A. and Pedersen, M. F. (2001). Comparative phenology of Sargassum muticum and Halidrys siliquosa (Phaeophyceae: Fucales) in Limfjorden, Denmark. Botanica Marina, 44, 31–39.CrossRefGoogle Scholar
Wernberg, T., Thomsen, M. S., Stæhr, P. A. and Pedersen, M. F. (2004). Epibiota communities of the introduced and indigenous macroalgal relatives Sargassum muticum and Halidrys siliquosa in Limfjorden (Denmark). Helgoland Marine Research, 58, 154–161.CrossRefGoogle Scholar
Wernberg, T., Thomsen, M. S., Tuya, F.et al. (2010). The resilience of Australasian kelp beds decrease along a latitudinal gradient in ocean temperature. Ecology Letters, 13, 685–694.CrossRefGoogle Scholar
White, E. M., Wilson, J. C. and Clarke, A. R. (2006). Biotic indirect effects: a neglected concept in invasion biology. Diversity and Distributions, 12, 443–455.CrossRefGoogle Scholar
White, L. F. and Shurin, J. B. (2011). Density dependent effects of an exotic marine macroalga on native community structure. Journal of Experimental Marine Biology and Ecology, 405, 111–119.CrossRefGoogle Scholar
Whitfield, P. E., Gardner, T., Vives, S. P.et al. (2002). Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Marine Ecology Progress Series, 235, 289–297.CrossRefGoogle Scholar
Willette, D. A. and Ambrose, R. F. (2009). The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St. Lucia. Aquatic Botany, 91, 137–142.CrossRefGoogle Scholar
Willette, D. A. and Ambrose, R. F. (2012). Effects of the invasive seagrass Halophila stipulacea on the native seagrass, Syringodium filiforme, and associated fish and epibiota communities in the Eastern Caribbean. Aquatic Botany, 103, 74–82.CrossRefGoogle Scholar
Williams, P. J., Floyd, T. A. and Rossong, M. A. (2006). Agonistic interactions between invasive green crabs, Carcinus maenas (Linnaeus), and sub-adult American lobsters, Homarus americanus (Milne Edwards). Journal of Experimental Marine Biology and Ecology, 329, 66–74.CrossRefGoogle Scholar
Williams, S. L. and Smith, J. E. (2007). A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327–359.CrossRefGoogle Scholar
Wilson, E. E. (2011). The facilitative role of an introduced bryozoan (Watersipora spp.): structuring fouling community assemblages within Humboldt Bay. MSc Thesis The Faculty of Humboldt State University.
Wonham, M. J., O'Connor, M. and Harley, C. D. G. (2005). Positive effects of a dominant invader on introduced and native mudflat species. Marine Ecology Progress Series, 289, 109–116.CrossRefGoogle Scholar
Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443–466.CrossRefGoogle Scholar
Wotton, D. M., O'Brien, C. and Stuart, M. D. (2004). Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, 49, 844–849.CrossRefGoogle ScholarPubMed
Wright, J. T., McKenzie, L. A. and Gribben, P. E. (2007). A decline in the abundance and condition of a native bivalve associated with Caulerpa taxifolia invasion. Marine and Freshwater Research, 58, 263–272.CrossRefGoogle Scholar
Wright, J. T., Byers, J. E., Koukoumaftsis, L. P., Ralph, P. J. and Gribben, P. E. (2010). Native species behaviour mitigates the impact of habitat-forming invasive seaweed. Oecologia, 163, 527–534.CrossRefGoogle ScholarPubMed
Wrona, F. J., Prowse, T. D., Reist, J. D.et al. (2006). Climate change effects on aquatic biota, ecosystem structure and function. AMBIO: A Journal of the Human Environment, 35, 359–369.CrossRefGoogle ScholarPubMed
Wu, Y. T., Wang, C. H., Zhang, X. D.et al. (2009). Effects of saltmarsh invasion by Spartina alterniflora on arthropod community structure and diets. Biological Invasions, 11, 635–649.CrossRefGoogle Scholar
York, P. H., Booth, D. J., Glasby, T. M. and Pease, B. C. (2006) Fish assemblages in habitats dominated by Caulerpa taxifolia and native seagrasses in south-eastern Australia. Marine Ecology Progress Series, 312, 223–234.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×