Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T04:24:47.170Z Has data issue: false hasContentIssue false

3 - Structure and Composition of the Mantle

Published online by Cambridge University Press:  15 December 2009

Gerald Schubert
Affiliation:
University of California, Los Angeles
Donald L. Turcotte
Affiliation:
Cornell University, New York
Peter Olson
Affiliation:
The Johns Hopkins University
Get access

Summary

Introduction

In this chapter we review what is currently known about the structure and the bulk composition of the mantle, with emphasis on how these may influence the style of convection, and how they may be influenced by it. Brief descriptions of the crust and the core are also included, again with an emphasis on those aspects of each region most germane to mantle convection. There are several monographs dealing with Earth structure and composition in a general context, e.g., Ringwood (1975, 1979) and Anderson (1989).

The study of mantle structure is by tradition the province of seismology, while mantle composition has historically been a subject for high-pressure and high-temperature mineralogy, petrology, and geochemistry. A great many important advances have recently been made in these areas, with the result that the studies of mantle composition, structure, and dynamics are now closely related. New findings from seismology, mineral physics, and isotope geochemistry are quickly applied as constraints on models of mantle dynamics. There are also interactions in the other direction. Each new step in understanding the physics of convection is quickly incorporated into new interpretations of mantle structure. This interdisciplinary style of research is perhaps the single most important reason for the emerging view of the deep Earth as a unified physical and chemical system.

Spherically Averaged Earth Structure

The determination of elastic parameters and density throughout the Earth using observations of seismic waves and other constraints is the prototype inverse problem in geophysics. Like many inverse problems, it is formally nonunique and suffers from practical difficulties such as incomplete sampling and errors in the data.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×