Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T02:56:28.815Z Has data issue: false hasContentIssue false

21 - Peripheral T-cell lymphomas

Published online by Cambridge University Press:  10 January 2011

Matthew J. Matasar
Affiliation:
Department of Medicine, Lymphoma Service and Hematology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Steven M. Horwitz
Affiliation:
Department of Medicine, Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
Susan O'Brien
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Julie M. Vose
Affiliation:
University of Nebraska Medical Center, Omaha
Hagop M. Kantarjian
Affiliation:
University of Texas/MD Anderson Cancer Center, Houston
Get access

Summary

Introduction

The T-cell non-Hodgkin lymphomas are a group of uncommon malignancies that in Western countries account for 15–20% of aggressive lymphomas and between 5% and 10% of all non-Hodgkin's lymphomas (NHL). Within the most current classification schemata, there are 21 distinct diseases that together constitute the mature T- and natural killer (NK)-cell lymphomas, diseases that range from indolent cutaneous lymphomas to aggressive malignancies that are often resistant to routine systemic therapy. Common to many of the types of T-cell lymphoma is a predilection towards extranodal disease, although sites of tropism vary among subtypes. Geographic frequencies of many subtypes, and of T-cell lymphomas as a group, are also highly variable: while only 1.5% of lymphomas are of T-cell lineage in Vancouver, Canada, 18.3% of lymphomas in Hong Kong show a T-cell phenotype. And in Asia, 47.4% of T-cell lymphomas are either NK/T-cell lymphoma, nasal type (NK/T-NT) or adult T-cell leukemia/lymphoma (ATLL), while in North America and Europe, these constitute only 7.1% and 5.3% of T-cell lymphomas, respectively. These variable incidence rates may in part represent differential exposure to risk factors for T-cell lymphoma, including Epstein–Barr virus (EBV) and human T-cell leukemia virus-1 (HTLV-1). As will be explored below, the epidemiologic variety across the subtypes of T-cell lymphoma is matched by the clinical heterogeneity of these diseases, confounding investigation (or understanding) of the class of diseases as a single entity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ascani, S, Zinzani, P, Gherlinzoni, F, et al. Peripheral T-cell lymphomas. Clinico-pathologic study of 168 cases diagnosed according to the REAL classification. Ann Oncol 1997;8(6):583–92.CrossRefGoogle Scholar
Anderson, J, Armitage, J, Weisenburger, D.Epidemiology of the non-Hodgkin's lymphomas: distributions of the major subtypes differ by geographic locations. Ann Oncol 1998;9(7):717–20.CrossRefGoogle ScholarPubMed
Vose, J, Armitage, J, Weisenberger, D. International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 2008;26(25):4124–30.Google ScholarPubMed
Swerdlow, SH, Campo, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn. Lyon, France, IARC Press, 2008.Google Scholar
Willemze, R, Jansen, PM, Cerroni, L, et al. Subcutaneous panniculitis-like T-cell lymphoma: definition, classification, and prognostic factors: an EORTC Cutaneous Lymphoma Group Study of 83 cases. Blood 2008;111(2):838–45.CrossRefGoogle ScholarPubMed
Querfeld, C, Kuzel, TM, Guitart, J, et al. Primary cutaneous CD30+ lymphoproliferative disorders: new insights into biology and therapy. Oncology (Williston Park) 2007;21(6):689–96.Google ScholarPubMed
Olsen, E, Vonderheid, E, Pimpinelli, N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007;110(6):1713–22.CrossRefGoogle Scholar
Kim, YH, Willemze, R, Pimpinelli, N, et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC). Blood 2007;110(2):479–84.CrossRefGoogle Scholar
Willemze, R, Jaffe, ES, Burg, G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005;105(10):3768–85.CrossRefGoogle ScholarPubMed
Querfeld, C, Rosen, ST, Guitart, J, et al. The spectrum of cutaneous T-cell lymphomas: new insights into biology and therapy. Curr Opin Hematol 2005;12(4):273–8.CrossRefGoogle ScholarPubMed
Querfeld, C, Guitart, J, Kuzel, TM, et al. Primary cutaneous lymphomas: a review with current treatment options. Blood Rev 2003;17(3):131–42.CrossRefGoogle ScholarPubMed
Liu, HL, Hoppe, RT, Kohler, S, et al. CD30+ cutaneous lymphoproliferative disorders: the Stanford experience in lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma. J Am Acad Dermatol 2003;49(6):1049–58.CrossRefGoogle ScholarPubMed
Foss, F. Overview of cutaneous T-cell lymphoma: prognostic factors and novel therapeutic approaches. Leuk Lymphoma 2003;44 Suppl 3:S55–61.CrossRefGoogle ScholarPubMed
Osuji, N, Matutes, E, Catovsky, D, et al. Histopathology of the spleen in T-cell large granular lymphocyte leukemia and T-cell prolymphocytic leukemia: a comparative review. Am J Surg Pathol 2005;29(7):935–41.CrossRefGoogle ScholarPubMed
Sokol, L, Loughran, TLarge granular lymphocyte leukemia. Oncologist 2006;11(3):263–73.CrossRefGoogle ScholarPubMed
Suzuki, R, Suzumiya, J, Nakamura, S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia 2004;18(4):763–70.CrossRefGoogle ScholarPubMed
Ryder, J, Wang, X, Bao, L, et al. Aggressive natural killer cell leukemia: report of a Chinese series and review of the literature. Int J Hematol 2007;85(1):18–25.CrossRefGoogle ScholarPubMed
Lukes, R, Collins, R. Lukes-Collins classification and its significance. Cancer Treat Rep 1977;61(6):971–9.Google ScholarPubMed
Lennert, K, Mohri, N, Stein, H, et al. The histopathology of malignant lymphoma. Br J Haematol 1975;31:193–203.CrossRefGoogle Scholar
The Non-Hodgkin's Lymphoma Pathologic Classification Project. National Cancer Institute sponsored study of classifications of non-Hodgkin's lymphomas: summary and description of a working formulation for clinical usage. Cancer 1982;49:2112–35.
Harris, NL, Jaffe, ES, Diebold, J, et al. The World Health Organization classification of hematological malignancies report of the Clinical Advisory Committee Meeting, Airlie House, Virginia, November 1997. Mod Pathol 2000;13(2):193–207.CrossRefGoogle Scholar
Kukreti, V, Patterson, B, Callum, J.Pathology the gold standard: a retrospective analysis of discordant “second-opinion” lymphoma pathology and its impact on patient care. Blood 2006;108:348.Google Scholar
Matasar, M, Shi, W, Silberstein, J, et al. Expert second opinion pathology review of lymphoma in the era of the World Health Organization classification. Blood 2007;110(11):3317.Google Scholar
Horwitz, S, Foss, F, Goldfarb, S. FDG-PET scans as an additional staging study for T-cell lymphomas: high rates of positivity do not result in frequent changes in stage. Blood 2006;108(11):2399.Google Scholar
Hadithi, M, Mallant, M, Oudejans, J, et al. 18F-FDG PET versus CT for the detection of enteropathy-associated T-cell lymphoma in refractory celiac disease. J Nucl Med 2006;47(10):1622–7.Google ScholarPubMed
Kako, S, Izutsu, K, Ota, Y, et al. FDG-PET in T-cell and NK-cell neoplasms. Ann Oncol 2007;18(10):1685–90.CrossRefGoogle ScholarPubMed
Gisselbrecht, C, Gaulard, P, Lepage, E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Groupe d'Etudes des Lymphomes de l'Adulte (GELA). Blood 1998;92(1):76–82.Google Scholar
Lopez-Guillermo, A, Cid, J, Salar, A, et al. Peripheral T-cell lymphomas: initial features, natural history, and prognostic factors in a series of 174 patients diagnosed according to the REAL Classification. Ann Oncol 1998;9(8):849–55.CrossRefGoogle Scholar
Sehn, LH, Berry, B, Chhanabhai, M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 2007;109(5):1857–61.CrossRefGoogle Scholar
Shipp, M, Harrington, D, Anderson, T. A predictive model for aggressive NHL: the international non-Hodgkin's lymphoma prognostic factors project. N Engl J Med 1993;329:987.Google Scholar
Gallamini, A, Stelitano, C, Calvi, R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood 2004;103(7):2474–9.CrossRefGoogle ScholarPubMed
Went, P, Agostinelli, C, Gallamini, A, et al. Marker expression in peripheral T-cell lymphoma: a proposed clinical-pathologic prognostic score. J Clin Oncol 2006;24(16):2472–9.CrossRefGoogle ScholarPubMed
Rudiger, T, Weisenburger, D, Anderson, J, et al. Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin's Lymphoma Classification Project. Ann Oncol 2002;13(1):140–9.CrossRefGoogle ScholarPubMed
Au, WY, Ma, SY, Chim, CS, et al. Clinicopathologic features and treatment outcome of mature T-cell and natural killer-cell lymphomas diagnosed according to the World Health Organization classification scheme: a single center experience of 10 years. Ann Oncol 2005;16(2):206–14.CrossRefGoogle ScholarPubMed
Nelson, M, Horsman, , Weisenburger, DD, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 2008;141(4):461–9.CrossRefGoogle ScholarPubMed
Pescarmona, E, Pignoloni, P, Puopolo, M, et al. p53 over-expression identifies a subset of nodal peripheral T-cell lymphomas with a distinctive biological profile and poor clinical outcome. J Pathol 2001;195(3):361–6.CrossRefGoogle ScholarPubMed
Moller, M, Gerdes, A, Skjodt, K, et al. Disrupted p53 function as predictor of treatment failure and poor prognosis in B- and T-cell non-Hodgkin's lymphoma 1. Clin Cancer Res 1999;5(5):1085–91.Google Scholar
Ballester, B, Ramuz, O, Gisselbrecht, C, et al. Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene 2005;25(10):1560–70.CrossRefGoogle Scholar
Vose, J. International Peripheral T-Cell Lymphoma (PTCL) Clinical and Pathologic Review Project: poor outcome by prognostic indices and lack of efficacy with anthracyclines. Blood 2005;106:811a.Google Scholar
Armitage, JO, Weisenburger, DD. New approach to classifying non-Hodgkin's lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin's Lymphoma Classification Project. J Clin Oncol 1998;16(8):2780–95.CrossRefGoogle ScholarPubMed
Matz, L, Papadimitriou, J, Carroll, J, et al. Angioimmunoblastic lymphadenopathy with dysproteinemia. Cancer 1977;40(5):2152–60.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Rho, R, Laddis, T, McQuain, C, et al. Miliary tuberculosis in a patient with Epstein-Barr virus-associated angioimmunoblastic lymphadenopathy. Ann Hematol 1996;72(5):333–5.CrossRefGoogle Scholar
Shamoto, M, Suchi, T. Intracytoplasmic type A virus-like particles in angioimmunoblastic lymphadenopathy. Cancer 1979;44(5):1641–3.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Sallah, S, Gagnon, G. Angioimmunoblastic lymphadenopathy with dysproteinemia: emphasis on pathogenesis and treatment. Acta Haematol 1998;99:57–64.CrossRefGoogle ScholarPubMed
Luppi, M, Marasca, R, Barozzi, P, et al. Frequent detection of human herpesvirus-6 sequences by polymerase chain reaction in paraffin-embedded lymph nodes from patients with angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Leuk Res 1993;17(11):1003–11.CrossRefGoogle ScholarPubMed
Luppi, M, Barozzi, P, Garber, R, et al. Expression of human herpesvirus-6 antigens in benign and malignant lymphoproliferative diseases. Am J Pathol 1998;153(11):815–23.CrossRefGoogle ScholarPubMed
Weiss, L, Jaffe, E, Liu, X, et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood 1992;79(7):1789–95.Google ScholarPubMed
Brauninger, A, Spieker, T, Willenbrock, K, et al. Survival and clonal expansion of mutating “forbidden” (immunoglobulin receptor-deficient) Epstein-Barr virus-infected B cells in angioimmunoblastic T cell lymphoma. J Exp Med 2001;194(7):927–40.CrossRefGoogle ScholarPubMed
Zettl, A, Lee, S, Rüdiger, T, et al. Epstein-Barr virus-associated B-cell lymphoproliferative disorders in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified. Am J Clin Pathol 2002;117(3):368–79.CrossRefGoogle ScholarPubMed
Attygalle, A, Al-Jehani, R, Diss, T, et al. Neoplastic T cells in angioimmunoblastic T-cell lymphoma express CD10. Blood 2002;99(2):627–33.CrossRefGoogle ScholarPubMed
Attygalle, A, Kyriakou, C, Dupuis, J, et al. Histologic evolution of angioimmunoblastic T-cell lymphoma in consecutive biopsies: clinical correlation and insights into natural history and disease progression. Am J Surg Pathol 2007;31(7):1077–88.CrossRefGoogle ScholarPubMed
Leval, L, Rickman, D, Thielen, C, et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 2007;109(11):4952–63.CrossRefGoogle Scholar
Smith, J, Hodges, E, Quin, C, et al. Frequent T and B cell oligoclones in histologically and immunophenotypically characterized angioimmunoblastic lymphadenopathy. Am J Pathol 2000;156(2):661–9.CrossRefGoogle Scholar
Dogan, A, Attygalle, A, Kyriakou, C. Angioimmunoblastic T-cell lymphoma. Br J Haematol 2003;121(5):681–91.CrossRefGoogle ScholarPubMed
Ghani, A, Krause, J. Bone marrow biopsy findings in angioimmunoblastic lymphadenopathy. Br J Haematol 1985;61(2):203–13.CrossRefGoogle ScholarPubMed
Stein, H, Mason, D, Gerdes, J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 1985;66(4):848–58.Google ScholarPubMed
Weisenburger, D, Anderson, J, Diebold, J, et al. Systemic anaplastic large-cell lymphoma: results from the non-Hodgkin lymphoma classification project. Am J Hematol 2001;67(3):172–8.CrossRefGoogle ScholarPubMed
Falini, B, Pileri, S, Stein, H, et al. Variable expression of leucocyte-common (CD45) antigen in CD30 (Ki1)-positive anaplastic large-cell lymphoma: implications for the differential diagnosis between lymphoid and nonlymphoid malignancies. Hum Pathol 1990;21(6):624–9.CrossRefGoogle ScholarPubMed
Stein, H, Gerdes, J, Schwab, U, et al. Identification of Hodgkin and Sternberg-Reed cells as a unique cell type derived from a newly-detected small-cell population. Int J Cancer 1982;30(4):445–59.CrossRefGoogle ScholarPubMed
Savage, KJ, Harris, NL, Vose, JM, et al. ALK-negative anaplastic large-cell lymphoma (ALCL) is clinically and immunophenotypically different from both ALK-positive ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood 2008;111(12):5496–504.CrossRefGoogle Scholar
Hodges, K, Collins, R, Greer, J, et al. Transformation of the small cell variant Ki-1+ lymphoma to anaplastic large cell lymphoma: pathologic and clinical features. Am J Surg Pathol 1999;23(1):49–58.CrossRefGoogle ScholarPubMed
Bekkenk, MW, Geelen, FA, Voorst Vader, PC, et al. Primary and secondary cutaneous CD30(+) lymphoproliferative disorders: a report from the Dutch Cutaneous Lymphoma Group on the long-term follow-up data of 219 patients and guidelines for diagnosis and treatment. Blood 2000;95(12):3653–61.Google ScholarPubMed
Savage, KJ, Chhanabhai, M, Gascoyne, RD, et al. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 2004;15(10):1467–75.CrossRefGoogle Scholar
Gale, J, Simmonds, P, Mead, G, et al. Enteropathy-type intestinal T-cell lymphoma: clinical features and treatment of 31 patients in a single center. J Clin Oncol 2000;18(4):795.CrossRefGoogle Scholar
Belhadj, K, Reyes, F, Farcet, JP, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood 2003;102(13):4261–9.CrossRefGoogle ScholarPubMed
Gressin, R, Peoch, M, Deconinck, E.The VIP-ABVD regimen is not superior to the CHOP 21 for the treatment of non epidermotropic peripheral T cell lymphoma. Final results of the LTP95 protocol of the GOELAMS. Blood 2006;108:697a.Google Scholar
Liang, R, Loke, S, Chan, A.The prognostic factors for peripheral T-cell lymphomas. Hematol Oncol 1992;10(3–4):135–40.CrossRefGoogle ScholarPubMed
d'Amore, F, Lauritzsen, G, Jantunen, E, et al. 15. Clinical Results in Lymphoma II: 071 high-dose therapy (HDT) and autologous stem cell transplant as first line treatment in peripheral t-cell lymphomas. Ann Oncol 2005;16(suppl 5):v56.Google Scholar
Corradini, P, Tarella, C, Zallio, F, et al. Long-term follow-up of patients with peripheral T-cell lymphomas treated up-front with high-dose chemotherapy followed by autologous stem cell transplantation. Leukemia 2006;20(9):1533–8.CrossRefGoogle ScholarPubMed
Reimer, P, Rudiger, T, Einsele, H, et al. Autologous stem cell transplantation as first-line therapy in peripheral T cell lymphomas: results of a prospective multicenter study. J Clin Oncol 2009;27(1):106–13.CrossRefGoogle ScholarPubMed
Kyriakou, C, Canals, C, Goldstone, A, et al. High-dose therapy and autologous stem-cell transplantation in angioimmunoblastic lymphoma: complete remission at transplantation is the major determinant of Outcome-Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 2008;26(2):218–24.Google ScholarPubMed
Horwitz, S, Moskowitz, C, Kewalramani, T, et al. Second-line therapy with ICE followed by high dose therapy and autologous stem cell transplantation for relapsed/refractory peripheral T-cell lymphomas: minimal benefit when analyzed by intent to treat. Blood 2005;106(11):2679.Google Scholar
Smith, SD, Bolwell, BJ, Rybicki, , et al. Autologous hematopoietic stem cell transplantation in peripheral T-cell lymphoma using a uniform high-dose regimen. Bone Marrow Transplant 2007;40(3):239–43.CrossRefGoogle ScholarPubMed
Song, KW, Mollee, P, Keating, A, et al. Autologous stem cell transplant for relapsed and refractory peripheral T-cell lymphoma: variable outcome according to pathological subtype. Br J Haematol 2003;120(6):978–85.CrossRefGoogle ScholarPubMed
Gouill, S, Milpied, N, Buzyn, A, et al. Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 2008;26(14):2264–71.CrossRefGoogle ScholarPubMed
Corradini, P, Dodero, A, Zallio, F, et al. Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin's lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 2004;22(11):2172–6.CrossRefGoogle ScholarPubMed
Proietti, F, Carneiro-Proietti, A, Catalan-Soares, B, et al. Global epidemiology of HTLV-I infection and associated diseases. Oncogene 2005;24(39):6058–68.CrossRefGoogle ScholarPubMed
Arisawa, K, Soda, M, Endo, S, et al. Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int J Cancer 2000;85(3):319–24.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Nicot, C.Current views in HTLV-I-associated adult T-cell leukemia/lymphoma. Am J Hematol 2005;78(3):232–9.CrossRefGoogle ScholarPubMed
Yamano, Y, Nagai, M, Brennan, M, et al. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 2002;99(1):88–94.CrossRefGoogle Scholar
Murphy, E, Hanchard, B, Figueroa, J, et al. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer 1989;43(2):250–3.CrossRefGoogle ScholarPubMed
Cleghorn, F, Manns, A, Falk, R, et al. Effect of human T-lymphotropic virus type I infection on non-Hodgkin's lymphoma incidence. J Natl Cancer Inst 1995;87:1009–14.CrossRefGoogle ScholarPubMed
Itoyama, T, Chaganti, R, Yamada, Y, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood 2001;97(11):3612–20.CrossRefGoogle ScholarPubMed
Takemoto, S, Matsuoka, M, Yamaguchi, K, et al. A novel diagnostic method of adult T-cell leukemia: monoclonal integration of human T-cell lymphotropic virus type I provirus DNA detected by inverse polymerase chain reaction. Blood 1994;84(9):3080–5.Google ScholarPubMed
Greenberg, S, Jaffe, E, Ehrlich, G, et al. Kaposi's sarcoma in human T-cell leukemia virus type I-associated adult T-cell leukemia. Blood 1990;76(5):971–6.Google ScholarPubMed
Tobinai, K, Ohtsu, T, Hayashi, M, et al. Epstein-Barr virus (EBV) genome carrying monoclonal B-cell lymphoma in a patient with adult T-cell leukemia-lymphoma. Leuk Res 1991;15(9):837–46.CrossRefGoogle Scholar
Tsukasaki, K, Hermine, O, Bazarbachi, A, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol 2009;27(3):453–9.CrossRefGoogle ScholarPubMed
Tsukasaki, K, Utsunomiya, A, Fukuda, H, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol 2007;25(34):5458–64.CrossRefGoogle ScholarPubMed
Hermine, O, Allard, I, Levy, V, et al. A prospective phase II clinical trial with the use of zidovudine and interferon-alpha in the acute and lymphoma forms of adult T-cell leukemia/lymphoma. Hematol J 2002;3(6):276–82.CrossRefGoogle ScholarPubMed
Datta, A, Bellon, M, Sinha-Datta, U, et al. Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 2006;108(3):1021–9.CrossRefGoogle ScholarPubMed
Bazarbachi, A, Panelatti, G, Ramos, J, et al. A worldwide meta-analysis on the use of zidovudine and interferon-alpha for the treatment of adult T-cell leukemia/lymphoma. Blood2007;110(11):2049.Google Scholar
Utsunomiya, A, Miyazaki, Y, Takatsuka, Y, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2001;27(1):15–20.CrossRefGoogle ScholarPubMed
Kami, M, Hamaki, T, Miyakoshi, S, et al. Allogeneic haematopoietic stem cell transplantation for the treatment of adult T-cell leukaemia/lymphoma. Br J Haematol 2003;120(2):304–9.CrossRefGoogle ScholarPubMed
Jaffe, E, Chan, J, Su, I, et al. Report of the Workshop on Nasal and Related Extranodal Angiocentric T/Natural Killer Cell Lymphomas. Definitions, differential diagnosis, and epidemiology. Am J Surg Pathol 1996;20(1):103–11.CrossRefGoogle ScholarPubMed
Aozasa, K, Takakuwa, T, Hongyo, T, et al. Nasal NK/T-cell lymphoma: epidemiology and pathogenesis. Int J Hematol 2008;87(2):110–17.CrossRefGoogle ScholarPubMed
Chiang, A, Tao, Q, Srivastava, G, et al. Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int J Cancer 1996;68(3):285–90.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Tao, Q, Ho, F, Loke, S, et al. Epstein-Barr virus is localized in the tumour cells of nasal lymphomas of NK, T or B cell type. Int J Cancer 1995;60(3):315–20.CrossRefGoogle ScholarPubMed
Chiang, A, Chan, A, Srivastava, G, et al. Nasal T/natural killer (NK)-cell lymphomas are derived from Epstein-Barr virus-infected cytotoxic lymphocytes of both NK- and T-cell lineage. Int J Cancer 1997;73(3):332–8.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Gorp, J, Weiping, L, Jacobse, K, et al. Epstein-Barr virus in nasal T-cell lymphomas (polymorphic reticulosis/midline malignant reticulosis) in western China. J Pathol 1994;173(2):81–7.CrossRefGoogle Scholar
Oyoshi, MK, Nagata, H, Kimura, N, et al. Preferential expansion of V gamma 9-J gamma P/V delta 2-J delta 3 gammadelta T cells in nasal T-cell lymphoma and chronic active Epstein-Barr virus infection. Am J Pathol 2003;162(5):1629–38.CrossRefGoogle Scholar
Kim, W, Song, S, Ahn, Y, et al. CHOP followed by involved field radiation: is it optimal for localized nasal natural killer/T-cell lymphoma?Ann Oncol 2001;12(3):349–52.CrossRefGoogle ScholarPubMed
Lee, J, Kim, W, Park, Y, et al. Nasal-type NK/T cell lymphoma: clinical features and treatment outcome. Br J Cancer 2005;92:1226–30.CrossRefGoogle ScholarPubMed
Lee, J, Park, Y, Kim, W, et al. Extranodal nasal type NK/T-cell lymphoma: elucidating clinical prognostic factors for risk-based stratification of therapy. Eur J Cancer 2005;41(10):1402–8.CrossRefGoogle Scholar
Kim, T, Park, Y, Lee, S, et al. Local tumor invasiveness is more predictive of survival than International Prognostic Index in stage IE/IIE extranodal NK/T-cell lymphoma, nasal type. Blood 2005;106(12):3785–90.CrossRefGoogle Scholar
Liang, R. Diagnosis and management of primary nasal lymphoma of T-cell or NK-cell origin. Clin Lymphoma Myeloma 2000;1(1):33–7.CrossRefGoogle ScholarPubMed
Lee, K, Yun, T, Kim, D, et al. First-line ifosfamide, methotrexate, etoposide and prednisolone chemotherapy +/−radiotherapy is active in stage I/II extranodal NK/T-cell lymphoma. Leuk Lymphoma 2006;47(7):1274–82.CrossRefGoogle Scholar
Chim, C-S, Ma, S-Y, Au, W-Y, et al. Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index. Blood 2004;103(1):216–21.CrossRefGoogle ScholarPubMed
Li, Y, Yao, B, Jin, J, et al. Radiotherapy as primary treatment for stage IE and IIE nasal natural killer/T-cell lymphoma. J Clin Oncol 2006;24(1):181–9.CrossRefGoogle ScholarPubMed
Peng, YL, Huang, HQ, Lin, XB, et al. Clinical outcomes of patients with peripheral T-cell lymphoma (PTCL) treated by EPOCH regimen. Ai Zheng 2004;23(8):943–6.Google ScholarPubMed
Suzuki, R, Suzumiya, J, Nakamura, S, et al. Hematopoietic stem cell transplantation for natural killer-cell lineage neoplasms. Bone Marrow Transplant 2006;37(4):425–31.CrossRefGoogle ScholarPubMed
Cooke, C, Krenacs, L, Stetler-Stevenson, M, et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood 1996;88(11):4265–74.Google ScholarPubMed
Suarez, F, Wlodarska, I, Rigal-Huguet, F, et al. Hepatosplenic alpha beta T-cell lymphoma: an unusual case with clinical, histologic, and cytogenetic features of gammadelta hepatosplenic T-cell lymphoma. Am J Surg Pathol 2000;24(7):1027–32.CrossRefGoogle ScholarPubMed
Macon, W, Levy, N, Kurtin, P, et al. Hepatosplenic [alpha][beta] T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic [gamma][delta] T-cell lymphomas. Am J Surg Pathol 2001;25(3):285–96.CrossRefGoogle ScholarPubMed
Ahmad, E, Kingma, D, Jaffe, E, et al. Flow cytometric immunophenotypic profiles of mature gamma delta T-cell malignancies involving peripheral blood and bone marrow. Cytometry B Clin Cytom 2005;67(1):6–12CrossRefGoogle ScholarPubMed
Wong, K, Chan, J, Matutes, E, et al. A distinctive aggressive lymphoma type. Am J Surg Pathol 1995;19(6):718–26.CrossRefGoogle ScholarPubMed
Chan, J, Sin, V, Wong, K, et al. Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood 1997;89(12):4501–13.Google ScholarPubMed
Jonveaux, P, Daniel, MT, Martel, V, et al. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia 1996;10(9):1453–5.Google ScholarPubMed
Coventry, S.Consistency of isochromosome 7q and trisomy 8 in hepatosplenic gammadelta T-cell lymphoma: detection by fluorescence in situ hybridization of a splenic touch-preparation from a pediatric patient. Pediatr Dev Pathol 1999;2(5):478–83.CrossRefGoogle ScholarPubMed
Santos, E, Raez, L, Salvatierra, J, et al. Primary hepatic non-Hodgkin's lymphomas: case report and review of the literature. Am J Gastroenterol 2003;98(12):2789–93.CrossRefGoogle ScholarPubMed
Hassan, R, Franco, S, Stefanoff, C, et al. Hepatosplenic T-cell lymphoma following seven malaria infections. Pathol Int 2006;56(11):668–73.CrossRefGoogle ScholarPubMed
Shale, M, Kanfer, E, Panaccione, R, et al. Hepatosplenic T cell lymphoma in inflammatory bowel disease. Gut 2008;57(12):1639–41.CrossRefGoogle ScholarPubMed
Mackey, A, Green, L, Liang, L, et al. Hepatosplenic T cell lymphoma associated with infliximab use in young patients treated for inflammatory bowel disease. J Pediatr Gastroenterol Nutr 2007;44(2):265–7.CrossRefGoogle ScholarPubMed
Weidmann, E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia 2000;14(6):991–7.CrossRefGoogle Scholar
Grigg, A.2'-Deoxycoformycin for hepatosplenic gammadelta T-cell lymphoma. Leuk Lymphoma 2001;42(4):797.CrossRefGoogle ScholarPubMed
Allory, Y, Challine, D, Haioun, C, et al. Bone marrow involvement in lymphomas with hemophagocytic syndrome at presentation: a clinicopathologic study of 11 patients in a Western institution. Am J Surg Pathol 2001;25(7):865–74.CrossRefGoogle Scholar
Chin, M, Mugishima, H, Takamura, M, et al. Hemophagocytic syndrome and hepatosplenic gammadelta T-cell lymphoma with isochromosome 7q and 8 trisomy. J Pediatr Hematol Oncol 2004;26(6):375–8.CrossRefGoogle ScholarPubMed
Iannitto, E, Barbera, V, Quintini, G, et al. Hepatosplenic gammadelta T-cell lymphoma: complete response induced by treatment with pentostatin. Br J Haematol 2002;117(4):995–6.Google ScholarPubMed
Aribi, A, Kantarjian, H, O'Brien, S, et al. Combination therapy with alemtuzumab and pentostatin is effective and has acceptable toxicity in patients with T-lymphoid neoplasms. J Clin Oncol 2007;25(18 Suppl):7037.Google Scholar
Jaeger, G, Bauer, F, Brezinschek, R, et al. Hepatosplenic gammadelta T-cell lymphoma successfully treated with a combination of alemtuzumab and cladribine. Ann Oncol 2008;19(5):1025–6.CrossRefGoogle ScholarPubMed
Konuma, T, Ooi, J, Takahashi, S, et al. Allogeneic stem cell transplantation for hepatosplenic gammadelta T-cell lymphoma. Leuk Lymphoma 2007;43(3):630–2.CrossRefGoogle Scholar
Gull, W. Fatty stools from disease of the mesenteric glands. Guy's Hosp Rep 1855;1:369–72.Google Scholar
Isaacson, P, Wright, D. Intestinal lymphoma associated with malabsorption. Lancet 1978;1(8055):67–70.CrossRefGoogle ScholarPubMed
Isaacson, PG, O'Connor, NT, Spencer, J, et al. Malignant histiocytosis of the intestine: a T-cell lymphoma. Lancet 1985;2(8457):688–91.CrossRefGoogle ScholarPubMed
Holmes, G, Prior, P, Lane, M, et al. Malignancy in coeliac disease–effect of a gluten free diet. Gut 1989;30(3):333–8.CrossRefGoogle ScholarPubMed
Trier, J. Celiac sprue. N Engl J Med 1991;325(24):1709–19.CrossRefGoogle ScholarPubMed
Leonard, J, Tucker, W, Fry, J, et al. Increased incidence of malignancy in dermatitis herpetiformis. Br Med J (Clin Res Ed) 1983;286(6358):16–18.CrossRefGoogle ScholarPubMed
Catassi, C, Fabiani, E, Corrao, G, et al. Risk of non-Hodgkin lymphoma in celiac disease. Am Med Assoc 2002;287(11):1413–19.CrossRefGoogle ScholarPubMed
Isaacson, P, Du, M. Gastrointestinal lymphoma: where morphology meets molecular biology. J Pathol 2005;205(2):255–74.CrossRefGoogle ScholarPubMed
Al–Toma, A, Goerres, M, Meijer, J, et al. Human leukocyte antigen–DQ2 homozygosity and the development of refractory celiac disease and enteropathy-associated T-cell lymphoma. Clin Gastroenterol Hepatol 2006;4(3):315–19.CrossRefGoogle ScholarPubMed
Gale, J, Simmonds, P, Mead, G, et al. Enteropathy-type T-cell lymphoma: clinical features and treatment of 31 patients in a single institution. J Clin Oncol 2000;18:795–803.CrossRefGoogle Scholar
Cellier, C, Delabesse, E, Helmer, C, et al. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. Lancet 2000;356(9225):203–8.CrossRefGoogle ScholarPubMed
Russell, G, Nagler-Anderson, C, Anderson, P, et al. Cytotoxic potential of intraepithelial lymphocytes (IELs). Presence of TIA-1, the cytolytic granule-associated protein, in human IELs in normal and diseased intestine. Am J Pathol 1993;143(2):350–4.Google ScholarPubMed
Bruin, P, Connolly, C, Oudejans, J, et al. Enteropathy-associated T-cell lymphomas have a cytotoxic T-cell phenotype. Histopathology 1997;31(4):313–17.CrossRefGoogle ScholarPubMed
Quintanilla-Martinez, L, Lome-Maldonado, C, Ott, G, et al. Primary non-Hodgkin's lymphoma of the intestine: high prevalence of Epstein-Barr virus in Mexican lymphomas as compared with European cases. Blood 1997;89(2):644–51.Google ScholarPubMed
Ko, Y, Ree, H, Kim, W, et al. Clinicopathologic and genotypic study of extranodal nasal-type natural killer/T-cell lymphoma and natural killer precursor lymphoma among Koreans. Cancer 2000;89(10):2106–16.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Daum, S, Weiss, D, Hummel, M, et al. Frequency of clonal intraepithelial T lymphocyte proliferations in enteropathy-type intestinal T cell lymphoma, coeliac disease, and refractory sprue. Gut 2001;49(6):804–12.CrossRefGoogle ScholarPubMed
Zettl, A, Ott, G, Makulik, A, et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol 2002;161(5):1635–45.CrossRefGoogle ScholarPubMed
Hoffmann, M, Vogelsang, H, Kletter, K, et al. 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) for assessment of enteropathy-type T cell lymphoma. Gut 2003;52(3):347–51.CrossRefGoogle ScholarPubMed
Culliford, A, Daly, J, Diamond, B, et al. The value of wireless capsule endoscopy in patients with complicated celiac disease. Gastrointest Endosc 2005;62(1):55–61.CrossRefGoogle ScholarPubMed
Daum, S, Ullrich, R, Heise, W, et al. Intestinal non-Hodgkin's lymphoma: a multicenter prospective clinical study from the German Study Group on Intestinal non-Hodgkin's Lymphoma. J Clin Oncol 2003;21(14):2740–6.CrossRefGoogle Scholar
Enblad, G, Hagberg, H, Erlanson, M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood 2004;103(8):2920–4.CrossRefGoogle ScholarPubMed
Soldini, D, Mora, O, Cavalli, F, et al. Efficacy of alemtuzumab and gemcitabine in a patient with enteropathy-type T-cell lymphoma. Br J Haematol 2008;142(3):484–6.CrossRefGoogle Scholar
Bishton, M, Haynes, A. Combination chemotherapy followed by autologous stem cell transplant for enteropathy-associated T cell lymphoma. Br J Haematol 2007;136(1):111–13.CrossRefGoogle ScholarPubMed
Al-toma, A, Visser, O, Roessel, H, et al. Autologous hematopoietic stem cell transplantation in refractory celiac disease with aberrant T cells. Blood 2007;109(5):2243–9.CrossRefGoogle ScholarPubMed
Dang, N, Pro, B, Hagemeister, F, et al. Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma. Br J Haematol 2007;136(3):439–47.CrossRefGoogle ScholarPubMed
Zinzani, PL, Alinari, L, Tani, M, et al. Preliminary observations of a phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica 2005;90(5):702–3.Google ScholarPubMed
Gallamini, A, Zaja, F, Patti, C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood 2007;110(7):2316–23.CrossRefGoogle ScholarPubMed
Trumper, L, Hohloch, K, Kloess, M, et al. CHOP/CHOEP-14 followed by consolidation with alemtuzumab in untreated aggressive T-cell lymphomas (DSHNHL 2003–1): feasibility and toxicity of a phase II trial of the German High Grade Non-Hodgkin's Lymphoma Group DSHNHL. J Clin Oncol 2006;24 (18 Suppl):7538.Google Scholar
Sallah, S, Wan, JY, Nguyen, NP. Treatment of refractory T-cell malignancies using gemcitabine. Br J Haematol 2001;113(1):185–7.CrossRefGoogle ScholarPubMed
Kim, JG, Sohn, SK, Chae, YS, et al. CHOP plus etoposide and gemcitabine (CHOP-EG) as front-line chemotherapy for patients with peripheral T cell lymphomas. Cancer Chemother Pharmacol 2006;58(1):35–9.CrossRefGoogle ScholarPubMed
O'Connor, O, Hamlin, P, Gerecitano, J. Pralatrexate (PDX) produces durable complete remissions in patients with chemotherapy resistant precursor and peripheral T-cell lymphomas: results of the MSKCC phase I/II experience. Blood 2006;108:122a.Google Scholar
Piekarz, R, Wright, J, Frye, R, et al. Final results of a phase 2 NCI multicenter study of romidepsin in patients with relapsed peripheral T-cell lymphoma (PTCL). Blood 2009;114(22):1657.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×