Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T07:30:51.744Z Has data issue: false hasContentIssue false

3 - Transition to turbulence

Published online by Cambridge University Press:  17 August 2009

Dieter Biskamp
Affiliation:
Max-Planck-Institut für Plasmaphysik, Garching, Germany
Get access

Summary

One important aspect of turbulence theory is the need to understand how obviously random motions are generated from a smooth flow. There are essentially three approaches to this problem: the dynamic systems approach; the development of singular solutions of the ideal fluid equations, in particular the question of finite-time singularities; and the excitation of instabilities and their effects. The dynamic systems approach, i.e., the transition to a chaotic temporal behavior in some low-order nonlinear dynamic model such as the Lorentz model of thermal convection, had once been considered a very promising way to describe also the transition to turbulence in a fluid. However, these expectations have largely been frustrated, mainly because the low-order approximations of the fluid equations ignore the most important aspect of turbulence, namely the excitation and interactions of a broad range of different spatial scales. We will therefore not discuss dynamic systems theory in this treatise.

The problem of finite-time singularities has evoked considerable discussion. This is primarily a mathematical problem concerning the nature of the solution of the ideal fluid equations, whose relevance for the generation of turbulence in dissipative systems might be debatable. However, similarly to the theory of absolute equilibrium states of the ideal system considered in Section 5.2, which provides valuable information about the cascade dynamics in dissipative turbulence, the way in which the ideal solution becomes singular gives some indication of the spatial structure of eddies encountered in the dissipative system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Transition to turbulence
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Magnetohydrodynamic Turbulence
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535222.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Transition to turbulence
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Magnetohydrodynamic Turbulence
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535222.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Transition to turbulence
  • Dieter Biskamp, Max-Planck-Institut für Plasmaphysik, Garching, Germany
  • Book: Magnetohydrodynamic Turbulence
  • Online publication: 17 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535222.004
Available formats
×