Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T04:29:45.328Z Has data issue: false hasContentIssue false

6 - Spin-torque-transfer mode MRAM

Published online by Cambridge University Press:  06 July 2010

Denny D. Tang
Affiliation:
MagIC Technologies, Inc., California
Yuan-Jen Lee
Affiliation:
MagIC Technologies, Inc., California
Get access

Summary

Introduction

The best description of spin-torque transfer can be found in the patent issued to John Slonczewski of IBM:

It is a fundamental fact that the macroscopic magnetization intensity of a magnet such as iron arises from the cooperative mutual alignment of elementary magnetic moments carried by electrons. An electron is little more than a mass particle carrying an electrostatic charge, which spins at a constant rate, like a planet about its axis. The electric current of this spin induces a surrounding magnetic field distribution resembling that which surrounds the Earth. Thus, each electron is effectively a miniscule permanent magnet…

… The exchange interaction is that force, arising quantum-mechanically from electrostatic interactions between spinning electrons, which causes this mutual alignment … Not only does it couple the bound spins of a ferromagnet to each other, but it also couples the spins of moving electrons, such as those partaking in current flow, to these bound electrons.

The subject of spin-torque transfer was not widely known until 1996. Due to its enormous technology potential, both academic and industrial research activities had been very active, and very rapid progresses have been made in recent years: from the first experimental verification of spin-torque transfer in giant magnetoresistance (GMR) film, to the implementation of this mechanism to magnetic tunneling junction devices. A large portion of this effort was directed towards the development of practical magnetic RAM chips based on the spin-torque-transfer mechanism.

Type
Chapter
Information
Magnetic Memory
Fundamentals and Technology
, pp. 122 - 164
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Slonsczewski, J. C., Electronic Device Using Magnetic Components, US Patent 5695894 (1997).
Lassailly, Y., Drouhin, H. -J., Sluijs, A. J., Lampel, G. and Marliere, C., Phys. Rev. B 50, 13054 (1994).CrossRef
Strijkers, G. J., Phys. Rev. B 63, 104510 (2001).CrossRef
Huang, S. X., Chen, Y. T. and Chien, C. L.Appl. Phys. Lett. 92, 242509 (2008).CrossRef
Slonczewski, J. C., J. Magn. & Magn. Mater. 159, L1 (1996).CrossRef
Berger, L., Phys. Rev. B 54, 9353 (1996).CrossRef
Tsoi, M., Jansen, A. G. M., Bass, J., Chiang, W. -C., Seck, M., Tsoi, V. and Wyder, P., Phys. Rev. Lett. 80, 4281 (1998).CrossRef
Meyers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. and Buhrman, R. A., Science 285(6), 867 (1999), www.sciencemag.org.CrossRef
Grollier, J., Cros, V., Hamzic, A.et al., Appl. Phys. Lett. 78(23), 509 (2001).CrossRef
Ralph, D. C. and Stiles, M. D., Spin Transfer Torques, http://cnst.nist.gov/epg/Pubs/pdf/epg791.pdf (2007).
Fert, A., Cros, V. and George, J. -M.et al., J. Magn. & Magn. Mater. 272–276(3), 1706 (2004).CrossRef
Sun, J. Z., Phys. Rev. B 62, 570 (2000).CrossRef
Krivorotov, I. N., Berkov, D. V., Gorn, N. L., Emley, N. C., Sankey, J. C., Ralph, D. C. and Buhrman, R. A., Phys. Rev. B 76, 024418 (2007).CrossRef
Braganca, P. M., Krivorotov, I. N., Ozatay, O., Garcia, A. G. F., Emley, N. C., Sankey, J. C., Ralph, D. C. and Buhrman, R. A., Phys. Rev. B 77, 144423 (2008).CrossRef
Slonczewski, J. C., J. Magn. & Magn. Mater. 195, L261 (1999).CrossRef
Koch, R. H., Katine, J. A. and Sun, J. Z., Phys. Rev. Lett. 92(8), 088302 (2004).CrossRef
Hosomi, M., Yamagishi, H., Yamamoto, T., et al., IEDM Technical Digest, 459 (2005).
Aoki, T., Ando, Y., Watanabe, D., Oogane, M. and Miyazaki, T., J. Appl. Phys. 103, 103911 (2008).CrossRef
Yagame, K., Hosomi, M., Olmori, I., Yamamoto, T., Higo, Y., Oishi, Y. and Kano, H., J. Appl. Phys. 97, 10C707 (2005).CrossRef
Higo, Y., Yamane, K., Ohba, K., Narisawa, H., Bessho, K., Hosomi, M. and Kano, H., Appl. Phys. Lett. 87, 082502 (2005).CrossRef
Inokuchi, T., Sugiuama, H., Saito, Y. and Inomata, K., Appl. Phys. Lett. 89, 102502 (2006).CrossRef
Min, T., Chen, Q., Torng, T., Horng, C., Tang, D. and Wang, P., J. Appl. Phys. 105, 07C931 (2009).
Das, J., Degraeve, R., Roussel, P., Groeseneken, G., Borghs, G. and Boeck, J., J. Appl. Phys. 91(10), 7712 (2002).CrossRef
Bae, S., Judy, J. H., Tsu, I. -F. and Davis, M., J. Appl. Phys. 94(12), 7636 (2003).CrossRef
Akerman, J., Brown, P., DeHerrera, M.et al., IEEE Trans., Device & Materials Reliability 4(3), 428 (2004).CrossRef
Li, S. C., Lee, J. -M., Shu, M. -F., Su, J. P. and Wu, T. -H., IEEE Trans., Magnetics 41(2), 899 (2005).CrossRef
Simmons, J. G., J. Appl. Phys. 34, 1793 (1963).CrossRef
Landry, G., Dong, Y., Du, J., Xiang, X. and Xiao, J. Q., Appl. Phys. Lett. 78(4), 501 (2001).CrossRef
Padhan, P., LeClair, P., Gupta, A., Tsunekawa, K. and Djayaprawira, D. D., Appl. Phys. Lett. 90, 142105 (2007).CrossRef
Beach, R., Min, T., Horng, C.et al., IEDM Technical Digest (2008), paper 12.5.
Sharrock, M. P., J. Appl. Phys. 76 (10), 6413 (1994).CrossRef
Meng, H. and Wang, J. P., Appl. Phys. Lett. 89, 152509 (2006).CrossRef
Huai, Y. and Nguyen, P. “Magnetic element utilizing spin transfer and MRAM devices using the magnetic element,” US Patent 6,714,444 (2004).
Diao, Z., Panchula, A., Ding, Y.et al., Appl. Phys. Lett. 90, 132508 (2007).CrossRef
Kishi, T., Yoda, H., Kai, T., et al., IEDM Technical Digest (2008), paper 12.6.
Hagiudaa, M., Mitania, S., Sekia, T., Yakushijia, K., Shimab, T. and Takanashia, K., J. Magn. & Magn. Mater. 310(2), 1905 (2007).CrossRef
Nagase, T., Nishiyama, K., Nakayama, M., Shimomura, N., Amano, M., Kishi, T. and Yoda, H., APS March Meeting, New Orleans, March 10–14 (2008).
Nakayama, M., Kai, T., Shimomura, N.et al., J. Appl. Phys. 103, 07A710 (2008).CrossRef
Yoda, H., Kishi, T., Nagase, T.et al., Intermag 2008 Digest, FA-04 (2008).
Yoshikawa, M., Kai, T., Amano, M., et al., Intermag 2008 Digest, AC-01 (2008).
Kent, A., and Stein, D., “High speed low power annular magnetic devices based on current induced spin-momentum transfer,” US Patent 7,307,876 (2007).
Stohr, J., Ultrafast Magnetic Switching of Nanoelements with Spin Currents, http://www.ssrl.slac.stanford.edu/stohr/spininjection.htm (2007).
Strachan, J. P., Chembrolu, V., Acremann, Y.et al., Phys. Rev. Lett. 100, 247201 (2008).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×