Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T01:55:34.160Z Has data issue: false hasContentIssue false

5 - Field-write mode MRAMs

Published online by Cambridge University Press:  06 July 2010

Denny D. Tang
Affiliation:
MagIC Technologies, Inc., California
Yuan-Jen Lee
Affiliation:
MagIC Technologies, Inc., California
Get access

Summary

Introduction

Magnetic ferrite core memory was invented and produced in the 1960s, prior to semiconductor memory. Ferrite cores are made from a paste of ferrite powers, which are sintered at high temperature. The process of forming a discrete core is not as scalable as the integrated circuit process on a silicon wafer. The product life of a magnetic core was short, and in the 1970s this technique was replaced by semiconductor memory. A similar fate happened to magnetic bubble memory, another type of magnetic memory, which was built on a magnetic garnet material substrate (gadolinium gallium garnet, Gd3Ga2(GaO4)3). The bit density of bubble memory technology is scalable since it is made with a planar process, similar to the silicon integration circuits. However, because it is on garnet, it is passive and cannot perform logic functions (such as address decoding), and it requires a companion silicon chip to provide the logic function to complete the memory access function. Even with better memory performance, magnetic bubble memory could not compete against magnetic hard disk and semiconductor memory, which continue to show a clear path of scaling for a lower cost. By the mid 1980s, commercial magnetic bubble production had ended.

Subsequent efforts in the development of magnetic memory have been focused on the integration of magnetic thin-film memory devices into silicon wafer processes. Magnetic memory devices exist in the form of thin-film stacks, which can easily be integrated into the back-end metal wiring metallurgy process.

Type
Chapter
Information
Magnetic Memory
Fundamentals and Technology
, pp. 91 - 121
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pohm, A. V., Daughton, J. M., Brown, J. and Beech, R., IEEE Trans. Magnetics 31 (6, Pt. 1), 3200 (1995).CrossRef
Wu, J. -C., Stadler, H. L. and Katti, R. R., High Speed Magneto-resistive Random Access Memory, US patent 5173873 (1992).
Kung, K. T., Tang, D. D. and Wang, P. -K.et al., Nonvolatile Magnetoresistive Storage Device Using Spin Valve Effect, US patent 5343422 (1994).
Inoue, T., Superconductor Magnetic Memory Cell and Method for Accessing the Same, US patent 5276639 (1994).
Daughton, J. M., “Magnetic spin devices: 7 years from lab to product,”Symposium X, MRS Fall Meeting, Boston, MA, Dec. 1 (2004).Google Scholar
Tang, D. D., Wang, P. K.Speriosu, V. S., Le, S., Fontana, R. E. and Rishton, S., IEDM Technical Digest (1995), p. 997.
Moodera, J. S., Meservey, R., and Hao, X., Phys. Rev. Lett. 70(6), 853(1993).CrossRef
Yaoi, T., Ishio, S. and Miyazaki, T., J. Magn. & Magn. Mater. 126, 430 (1993).CrossRef
Meservey, R. and Tedrow, P. M., Phys. Rep. 238(4), 214 (1994).CrossRef
Matsuyama, K., Asada, H., Ikeda, S. and Taniguchi, K., IEEE Trans. Magnetics, 31(6), 3176 (1995).CrossRef
Gallagher, W. J. and Parkin, S. S. P., IBM J. Research & Development, Special issue on Spintronics 50(1) (2006).
Asao, Y., Kajiyama, T., Fukuzumi, Y.et al., IEDM Technical Digest (2004).
Tsuji, T., Tanizaki, H., Ishikawa, M.et al., Symposium on VLSI Circuits, Digest of Papers, Honolulu, June 17 –19 (2004), p. 451.
Yin, G. M., Eynde, F. O. and Sansen, W., IEEE J. Solid-State Circuits 27(2), 208 (1992).CrossRef
Tehrani, S., Engel, B., Slaughter, J. M.et al., ISSCC Technical Digest Papers 43, 130 (2000).
Honjo, H., Nebashi, R., Suzuki, T., Fukami, S., Ishiwata, N.,Sugibayashi, T. and Kasai, N., J. Appl. Phys. 103, 07A711 (2008).CrossRef
Kim, K. S., Lee, C. E. and Lim, S. H., IEEE Trans. Magnetics 39(5), 2857 (2003).CrossRef
Zhu, J. and Zhu, X., Private communications (2001).
Lin, M., Private communication (2004).
Yamamoto, T., Kano, H., Higo, Y.et al., J. Appl. Phys. 97, 10P503 (2005).CrossRef
Popcov, A. F., Savchenko, L. L., Vorotnikov, N. V., Tehrani, S. and Shi, J., Appl. Phys. Lett. 77, 277 (2000).CrossRef
Shi, J. and Tehrani, S., Appl. Phys. Lett. 77, 1692 (2000).CrossRef
Shimonura, N., Kishi, T., Yoshikawa, M., Kitagawa, E., Asao, Y., Hada, H., Yoda, H. and Tahara, S., IEEE Trans. Magnetics 41(10), 2652 (2005).CrossRef
Hönigschmid, H., Beer, P., Bette, A.et al., IEEE Digest ISSCC (2006), paper 7.3, p. 136.
Reohr, W. R. and Scheuerlein, R. E., Segmented write line architecture for writing magnetic random access memories, US Patent 6335890 (January 1, 2002).
Ounadjala, K. and Jenne, F. B., Asymmetric dot shape for increasing select-unselect margin in MRAM devices, US Patent 6798691 (2001).
Kai, T., Yoshikawa, M., Fukuzumi, Y.et al., IEDM Technical Digest (2004), p. 583.
Nakayama, M., Kai, T., Ikegawa, S.et al., IEEE Trans. Magnetics 42(10), 2757 (2006).CrossRef
Oh, S. C., Lee, J. E., Kim, H. -J.et al., J. Appl. Phys. 97, 10P509 (2005).CrossRef
Iwata, Y., Tsuchida, K., Inaba, T.et al., IEEE Digest ISSCC (2006), paper 7.4, p. 138.
Takenaga, T., Kuroiwa, T., Tsuchimoto, J., Matsuda, R., Ueno, S., Takada, H., Abe, Y. and Tokuda, Y., IEEE Trans. Magnetics 43(6), 2352 (2007).CrossRef
Savtchenko, L., Engel, B. N., Rizzo, N. D., Deherrera, M. F. and Janesky, J. A., Method of Writing to Scalable Magnetoresistive Random Access Memory Element, US patent 6525906 (2003).
Worledge, D. C., Appl. Phys. Lett. 84, 2847 (2004).CrossRef
Motoyoshi, M., Yamamura, I., Ohtsuka, W.et al., IEEE Symposium on VLSI Technology, Honolulu, June 15–17 (2004), p. 22.
Suzuki, T., Fukumoto, Y., Mori, K.et al., IEEE Symposium on VLSI Technology, Technical Digest, Kyoto, June 14–16 (2005), papers 10B-3, p. 188.
Fukumoto, Y., Suzuki, T. and Tahara, S., Appl. Phys. Lett. 89, 061909 (2006).CrossRef
Hung, C. -C., Lee, Y. -J., Kao, M. -J.et al., Appl. Phys. Lett. 88, 112501 (2006).CrossRef
Abraham, D. W. and Worledge, D. C., Appl. Phys. Lett. 88, 262505 (2006).CrossRef
Wang, S. -Y., Fujiwara, H. and Sun, M., J. Appl. Phys. 99, 08N903 (2006).CrossRef
Lee, Y. -J., Hung, C. -C., Wang, D. -Y.et al., Appl. Phys. Lett. 90, 032503 (2007).CrossRef
Prejbeanu, I. L., Kula, W., Ounadjela, K., Sousa, R. C., Redon, O., Dieny, B. and Nozières, J. -P., IEEE Trans. Magnetics 40(4), 2625 (2004).CrossRef
Sakimura, N., Sugibayashi, T., Honda, T., Honjo, H., Saito, S., Suzuki, T., Ishiwata, N. and Tahara, S., IEEE J. Solid-State Circuits 42(4), 830 (2007).CrossRef
Schumacher, H. W., Chappert, C., Sousa, R. C., Freitas, P. P., Miltat, J. and Ferré, J., J. Appl. Phys. 93, 7290 (2003).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×