Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2017
  • Online publication date: March 2017

Labelled deductive systems: a position paper

Anderson, A. R. and Belnap, N. D., Entailment , Princeton University Press, 1975.
Gabbay, D. M., Semantical Investigations in Heyting's Intuitionistic Logic, D. Reidel, 1981.
Gabbay, D. M., Theoretical Foundations for non monotonic reasoning, in, Expert Systems, Logics and Models of Concurrent Systems , Apt, K. (ed.), Springer-Verlag, 1985, pp. 439–459.
Gabbay, D. M., Theory of Algorithmic Proof, in Handbook of Logic in Computer Science , Volume 1, Abramsky, S., Gabbay, D. M., Maibaum, T. S. E. (eds.), Oxford University Press, 1993, pp. 307–408.
Makinson, D., General Theory of Cumulative Inference, in Nonmonotonic Reasoning , Reinfrank, M., de Kleer, J., Ginsberg, M. L. and Sandewall, E. (eds.), Lecture Notes on Artificial Intelligence, no. 346, Springer-Verlag.
Makinson, D., General Patterns in nonmonotonic Reasoning, in, Handbook of Logic in Artificial Intelligence and Logic Programming , Volume 2, Gabbay, D. M., Hogger, C. J., Robinson, J. A. (eds.), Oxford University Press, to appear, 1993.
Scott, D., Completeness and axiomatizability in many valued logics, in Proceedings of the Tarski Symposium , American Mathematical Society, 1974, pp. 411–436.
Tarski, A., On the Concept of Logical Consequence (in Polish), 1936. Translation in Logic Semantics Metamathematics , Oxford University Press, 1956.
Wojcicki, R., An Axiomatic treatment ofnon monotonic arguments, Studia Logica , to appear.
Wojcicki, R., Heuristic Rules of Inference in non-monotonic arguments, Studia Logica , to appear.
Kraus, S., Lehmann, D., and Magidor, M., Preferential models and cumulative logics , Artificial Intelligence , vol. 44 (1990), pp. 167–207.
Lehmann, D., What does a conditional knowledge base entail? in KR 89, Toronto, May 89 , Morgan Kaufmann Publisher, pp. 1–18.
Vermeir, D. and Laenens, E., An overview of ordered logic, in Abstracts of the Third Logical Biennial , Varga, Bulgaria, 1990.
Nute, D., LDR—A Logic for Defeasible Reasoning, 1986, ACMC Research Report 01–0013.
Gabbay, D. M., Algorithmic Proof with Diminishing Resource, I, in Proceedings CSL 90 , LNCS 533, Springer-Verlag, pp. 156–173.
Gabbay, D. M., The Craig Interpolation Theorem for Intuitionisic Logic I and II , in Logic Colloquium 69 , Gandy, R. O. (ed.), North-Holland Pub. Company, pp. 391–410.
Gabbay, D. M., Abduction in labelled deductive systems, a conceptual abstract, in ECSQAU 91 , Kruse, R. and Siegel, P. (eds.), Lecture notes in Computer Science 548, Springer-Verlag, 1991, pp. 3–12.
Gabbay, D. M. and de Queiroz, R. J. G. B., Extending the Curry-Howard Interpretation to Linear, Relevant and other Resource Logics , The Journal of Symbolic Logic , vol. 57 (1992), pp. 1319–1365.
Gabbay, D. M., Labelled Deductive Systems, 1st Draft September 1989, 6th draft February 1991. Published as a report by CIS, University of Munich. To appear as a book with Oxford University Press.
Gabbay, D. M., Theoretical Foundations for non monotonic reasoning Part 2: Structured non-monotonic Theories, in SCAI ’91 , Proceedings of the Third Scandinavian Conference on AI, IOS Press, Amsterdam, pp. 19–40.
Gabbay, D. M., A General Theory of Structured Consequence Relations, to appear in a volume on substructured logics, Schröder-Heister, P. and Dosen, K. (eds.), Oxford University Press.
Gabbay, D. M., Modal and Temporal Logic Programming II, in, Logic Programming—Expanding the Horizon , Dodd, T., Owens, R. P., Torrance, S. (eds.), Ablex, 1991, pp. 82–123.
Gabbay, D. M., How to construct a logic for your application, in, Proceedings of the 16th German AI Conference, GWAI 92 , Lecture Notes on AI, vol. 671, Springer-Verlag, 1992, pp. 1–30.
Gabbay, D. M., Labelled Deductive Systems and Situation Theory, to appear in , Proceedings STA-III , 1992.
Gabbay, D. M., Modal and Temporal Logic Programming III, Metalevel Features in the Object Language, in, Non-Classical Logic Programming , Fariñas del Cerro, L. and Penttonen, M. (eds.), Oxford University Press, 1992, pp. 85–124.
Olivetti, N., Tableaux and Sequent Calculus for Minimal Entailment , Journal of Automated Reasoning , vol. 9 (1992), pp. 99–139.