Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T01:49:07.419Z Has data issue: false hasContentIssue false

3 - Notes on the missing satellites problem

Published online by Cambridge University Press:  05 November 2013

James Bullock
Affiliation:
University of California Irvine
David Martínez-Delgado
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg
Get access

Summary

The Missing Satellites Problem (MSP) broadly refers to the overabundance of predicted Cold Dark Matter (CDM) sub-halos compared to satellite galaxies known to exist in the Local Group. The most popular interpretation of the MSP is that the smallest dark matter halos in the universe are extremely inefficient at forming stars. The question from that standpoint is to identify the feedback source that makes small halos dark and to identify any obvious mass scale where the truncation in the efficiency of galaxy formation occurs.

Among the most exciting developments in near-field cosmology in recent years is the discovery of a new population satellite galaxies orbiting the Milky Way and M31. Wide field, resolved star surveys have more than doubled the dwarf satellite count in less than a decade, revealing a population of ultra faint galaxies that are less luminous that some star clusters. For the first time, there are empirical reasons to believe that there really are more than 100 missing satellite galaxies in the Local Group, lurking just beyond our ability to detect them, or simply inhabiting a region of the sky that has yet to be surveyed.

Remarkably, both kinematic studies and completeness-correction studies seem to point to a characteristic potential well depth for satellite sub-halos that is quite close to the mass scale where photoionization and atomic cooling should limit galaxy formation. Among the more pressing problems associated with this interpretation is to understand the selection biases that limit our ability to detect the lowest mass galaxies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, T., Aldering, G., Annis, J., and 68 coauthors. 2005. The Dark Energy Survey Collaboration. The Dark Energy Survey, arXiv:astro-ph/0510346.
Adelman-McCarthy, J. K., and 153 colleagues. 2007. The fifth data release of the Sloan Digital Sky Survey. ApJS, 172(Oct.), 634–644.Google Scholar
Adén, D., Wilkinson, M. I., Read, J. I., Feltzing, S., Koch, A., Gilmore, G. F., Grebel, E. K., and Lundström, I. 2009. A new low mass for the Hercules dSph: the end of a common mass scale for the Dwarfs?ApJ, 706, L150.Google Scholar
Baldry, I. K., Glazebrook, K., and Driver, S. P. 2008. On the galaxy stellar mass function, the mass-metallicity relation and the implied baryonic mass function. MNRAS, 388(Aug.), 945–959.Google Scholar
Behroozi, P. S. 2010. Private communication.
Behroozi, P. S., Conroy, C., and Wechsler, R. H. 2010. A comprehensive analysis of uncertainties affecting the stellar mass-halo mass relation for 0 < z < 4. ApJ, 717(July), 379–403.Google Scholar
Bell, E. F., and 17 colleagues. 2008. The accretion origin of the Milky Way's stellar halo. ApJ, 680(June), 295–311.Google Scholar
Belokurov, V., and 9 colleagues. 2009. The discovery of Segue 2: a prototype of the population of satellites of satellites. MNRAS, 397(Aug.), 1748–1755.Google Scholar
Belokurov, V., and 33 colleagues. 2007. Cats and dogs, hair and a hero: A quintet of new Milky Way companions. ApJ, 654(Jan.), 897–906.Google Scholar
Bertschinger, E. 2006. Effects of cold dark matter decoupling and pair annihilation on cosmological perturbations. Phys. Rev. D, 74(Sept.), 063509.Google Scholar
Blumenthal, G. R., Faber, S. M., Primack, J. R., and Rees, M. J. 1984. Formation of galaxies and large-scale structure with cold dark matter. Nature, 311(Oct.), 517–525.Google Scholar
Bovill, M. S. and Ricotti, M. 2009. Pre-reionization fossils, ultrafaint dwarfs, and the missing galactic satellite problem. ApJ, 693(Mar.), 1859–1870.Google Scholar
Bryan, G. L. and Norman, M. L. 1998. Statistical properties of X-ray clusters: analytic and numerical comparisons. ApJ, 495(Mar.), 80.Google Scholar
Busha, M. T., Alvarez, M. A., Wechsler, R. H., Abel, T., and Strigari, L. E. 2010. The impact of inhomogeneous reionization on the satellite galaxy population of the Milky Way. ApJ, 710(Feb.), 408–420.Google Scholar
Bullock, J. S. and Johnston, K. V. 2005. Tracing galaxy formation with stellar halos. I. Methods. ApJ, 635(Dec.), 931–949.Google Scholar
Bullock, J. S. and Johnston, K. V. 2007. Dynamical evolution of accreted dwarf galaxies. Island Universes – Structure and Evolution of Disk Galaxies, Dordrechti Springer, 227.
Bullock, J. S., Kravtsov, A. V., and Weinberg, D. H. 2000. Reionization and the abundance of galactic satellites. ApJ, 539(Aug.), 517–521.Google Scholar
Bullock, J. S., Kravtsov, A. V., and Weinberg, D. H. 2001. Hierarchical galaxy formation and substructure in the Galaxy's stellar halo. ApJ, 548(Feb.), 33–46.Google Scholar
Bullock, J. S., Stewart, K. R., Kaplinghat, M., Tollerud, E. J., and Wolf, J. 2010. Stealth galaxies in the halo of the Milky Way. ApJ, 717(July), 1043–1053.Google Scholar
Collins, M. L. M., and 10 colleagues. 2010. A Keck/DEIMOS spectroscopic survey of the faint M31 satellites AndIX, AndXI, AndXII and AndXIII†. MNRAS, 407(Oct.), 2411–2433.Google Scholar
Conroy, C. and Wechsler, R. H. 2009. Connecting galaxies, halos, and star formation rates across cosmic time. ApJ, 696(May), 620–635.Google Scholar
Cooper, A. P., and 11 colleagues. 2010. Galactic stellar haloes in the CDM model. MNRAS, 406(Aug.), 744–766.Google Scholar
Courteau, S., Dutton, A. A., van den Bosch, F. C., MacArthur, L. A., Dekel, A., McIntosh, D. H., and Dale, D. A. 2007. Scaling relations of spiral galaxies. ApJ, 671 (Dec.), 203–225.Google Scholar
Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D. M. 1985. The evolution of large-scale structure in a universe dominated by cold dark matter. ApJ, 292(May), 371–394.Google Scholar
Dekel, A. 2005. Characteristic scales in galaxy formation. Multiwavelength Mapping of Galaxy Formation and Evolution, Renzini, A. and Bender, R., eds., 269.
Dekel, A. and Silk, J. 1986. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. ApJ, 303(Apr.), 39–55.Google Scholar
Diemand, J., Kuhlen, M., and Madau, P. 2007. Dark matter substructure and gamma-ray annihilation in the Milky Way halo. ApJ, 657(Mar.), 262–270.Google Scholar
Diemand, J., Kuhlen, M., Madau, P., Zemp, M., Moore, B., Potter, D., and Stadel, J. 2008. Clumps and streams in the local dark matter distribution. Nature, 454(Aug.), 735–738.Google Scholar
D'Onghia, E., Springel, V., Hernquist, L., and Keres, D. 2010. Substructure depletion in the Milky Way halo by the disk. ApJ, 709(Feb.), 1138–1147.Google Scholar
Efstathiou, G. 1992. Suppressing the formation of dwarf galaxies via photoionization. MNRAS, 256(May), 43P–47P.Google Scholar
Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F., and Tanvir, N. R. 2002. Evidence for stellar substructure in the halo and outer disk of M31. AJ, 124(Sept.), 1452–1463.Google Scholar
Geha, M., Willman, B., Simon, J. D., Strigari, L. E., Kirby, E. N., Law, D. R., and Strader, J. 2009. The least-luminous galaxy: spectroscopy of the Milky Way satellite Segue 1. ApJ, 692(Feb.), 1464–1475.Google Scholar
Grcevich, J. and Putman, M. E. 2009. H I in Local Group dwarf galaxies and stripping by the galactic halo. ApJ, 696(May), 385–395.Google Scholar
Grillmair, C. J. 2006. Detection of a 60 deg; long dwarf galaxy debris stream. ApJ, 645(July), L37–L40.Google Scholar
Grillmair, C. J. 2009. Four new stellar debris streams in the Galactic halo. ApJ, 693(Mar.), 1118–1127.Google Scholar
Gnedin, O. Y., Brown, W. R., Geller, M. J., and Kenyon, S. J. 2010. The mass profile of the Galaxy to 80 kpc. ApJ, 720(Sept.), L108–L112.Google Scholar
Guhathakurta, P., and 9 colleagues. 2006. Dynamics and stellar content of the Giant Southern Stream in M31. I. Keck spectroscopy of red giant stars. AJ, 131(May), 2497–2513.Google Scholar
Hayashi, E., Navarro, J. F., Taylor, J. E., Stadel, J., and Quinn, T. 2003. The structural evolution of substructure. ApJ, 584(Feb.), 541–558.Google Scholar
Ibata, R., Martin, N. F., Irwin, M., Chapman, S., Ferguson, A. M. N., Lewis, G. F., and McConnachie, A. W. 2007. The haunted halos of Andromeda and Triangulum: a panorama of galaxy formation in action. ApJ, 671(Dec.), 1591–1623.Google Scholar
Ivezić, Ž., and 42 colleagues 2000. Candidate RR Lyrae stars found in Sloan Digital Sky Survey Commissioning Data. AJ, 120(Aug.), 963–977.Google Scholar
Ivezić, Ž., and 108 colleagues. 2008. LSST: from science drivers to reference design and anticipated data products. (May), arXiv:0805.2366.
Kaiser, N., and 25 colleagues. 2002. Pan-STARRS: a Large Synoptic Survey Telescope array. Proc. SPIE, 4836(Dec.), 154–164.Google Scholar
Kalirai, J. S., and 9 colleagues 2010. The SPLASH Survey: internal kinematics, chemical abundances, and masses of the Andromeda I, II, III, VII, X, and XIV dwarf spheroidal galaxies. ApJ, 711(Mar.), 671–692.Google Scholar
Kauffmann, G., White, S. D. M., and Guiderdoni, B. 1993. The formation and evolution of galaxies within merging dark matter haloes. MNRAS, 264(Sept.), 201.Google Scholar
Kazantzidis, S., Łokas, E. L., Callegari, S., Mayer, L., and Moustakas, L. A. 2011. On the efficiency of the tidal stirring mechanism for the origin of dwarf spheroidals: dependence on the orbital and structural parameters of the progenitor disky dwarfs. ApJ, 726(Jan.), 98.CrossRefGoogle Scholar
Kazantzidis, S., Mayer, L., Mastropietro, C., Diemand, J., Stadel, J., and Moore, B. 2004. Density profiles of cold dark matter substructure: implications for the missing-satellites problem. ApJ, 608(June), 663–679.CrossRefGoogle Scholar
Keller, S. C., and 12 colleagues. 2007. The SkyMapper Telescope and the Southern Sky Survey. PASA, 24(May), 1–12.Google Scholar
Kirby, E. N., Simon, J. D., Geha, M., Guhathakurta, P., and Frebel, A. 2008. Uncovering extremely metal-poor stars in the Milky Way's ultrafaint dwarf spheroidal satellite galaxies. ApJ, 685(Sept.), L43–L46.Google Scholar
Klypin, A., Gottlöber, S., Kravtsov, A. V., and Khokhlov, A. M. 1999b. Galaxies in N-body simulations: overcoming the overmerging problem. ApJ, 516(May), 530–551.Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., and Prada, F. 1999a. Where are the missing Galactic satellites?ApJ, 522(Sept.), 82–92.Google Scholar
Komatsu, E., and 20 colleagues 2011. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. ApJS, 192(Feb.), 18.Google Scholar
Koposov, S., and 10 colleagues 2008. The luminosity function of the Milky Way satellites. ApJ, 686(Oct.), 279–291.Google Scholar
Kravtsov, A. 2010. Dark matter substructure and dwarf galactic satellites. Advances in Astronomy, 2010, 1–21.Google Scholar
Kravtsov, A. V., Berlind, A. A., Wechsler, R. H., Klypin, A. A., Gottlöber, S., Allgood, B., and Primack, J. R. 2004a. The dark side of the halo occupation distribution. ApJ, 609(July), 35–49.Google Scholar
Kravtsov, A. V., Gnedin, O. Y., and Klypin, A. A. 2004b. The tumultuous lives of galactic dwarfs and the missing satellites problem. ApJ, 609(July), 482–497.Google Scholar
Kuhlen, , 2010. Private communication.
Kuhlen, M., Weiner, N., Diemand, J., Madau, P., Moore, B., Potter, D., Stadel, J., and Zemp, M. 2010. Dark matter direct detection with non-Maxwellian velocity structure. J. Cosmology Astropart. Phys., 2(Feb.), 30.Google Scholar
Li, Y.-S., Helmi, A., De Lucia, G., and Stoehr, F. 2009. On the common mass scale of the Milky Way satellites. MNRAS, 397(Sept.), L87–L91.Google Scholar
Loeb, A. and Zaldarriaga, M. 2005. Small-scale power spectrum of cold dark matter. Phys. Rev. D, 71 (May), 103520.Google Scholar
Macciò, A. V., Kang, X., and Moore, B. 2009. Central mass and luminosity of Milky Way satellites in the A Cold Dark Matter model. ApJ, 692(Feb.), L109–L112.Google Scholar
Madau, P., Kuhlen, M., Diemand, J., Moore, B., Zemp, M., Potter, D., and Stadel, J. 2008. Fossil remnants of reionization in the halo of the Milky Way. ApJ, 689(Dec.), L41–L44.Google Scholar
Majewski, S. R., and 11 colleagues. 2007. Discovery of Andromeda XIV: a dwarf spheroidal dynamical rogue in the Local Group?. ApJ, 670(Nov.), L9–L12.Google Scholar
Majewski, S. R., Skrutskie, M. F., Weinberg, M. D., and Ostheimer, J. C. 2003. A Two Micron All Sky Survey view of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius core and tidal arms. ApJ, 599(Dec.), 1082–1115.CrossRefGoogle Scholar
Martin, N. F., and 12 colleagues 2009. PAndAS' CUBS: discovery of two new dwarf galaxies in the surroundings of the Andromeda and Triangulum galaxies. ApJ, 705(Nov.), 758–765.Google Scholar
Martin, N. F., Ibata, R. A., Chapman, S. C., Irwin, M., and Lewis, G. F. 2007. A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies. MNRAS, 380(Sept.), 281–300.Google Scholar
Martínez, G. D., Bullock, J. S., Kaplinghat, M., Strigari, L. E., and Trotta, R. 2009. Indirect dark matter detection from dwarf satellites: joint expectations from astrophysics and supersymmetry. J. Cosmology Astropart. Phys., 6(June), 14.Google Scholar
Martínez, G. D., Minor, Q. E., Bullock, J., Kaplinghat, M., Simon, J. D., and Geha, M. 2011. A complete spectroscopic survey of the Milky Way satellite Segue 1: dark matter content, stellar membership, and binary properties from a bayesian analysis. ApJ, 738(Sept.), 55.Google Scholar
Mateo, M. L. 1998. Dwarf galaxies of the Local Group. ARA&A, 36, 435–506.Google Scholar
McConnachie, A. W., and 28 colleagues. 2009. The remnants of galaxy formation from a panoramic survey of the region around M31. Nature, 461 (Sept.), 66–69.Google Scholar
McGaugh, S. S. and Wolf, J. 2010. Local Group dwarf spheroidals: correlated deviations from the baryonic Tully-Fisher relation. ApJ, 722(Oct.), 248–261.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P. 1999. Dark matter substructure within Galactic halos. ApJ, 524(Oct.), L19–L22.Google Scholar
Moster, B. P., Somerville, R. S., Maulbetsch, C., van den Bosch, F. C., Macciò, A. V., Naab, T., and Oser, L. 2010. Constraints on the relationship between stellar mass and halo mass at low and high redshift. ApJ, 710(Feb.), 903–923.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1997. A universal density profile from hierarchical clustering. ApJ, 490(Dec.), 493.Google Scholar
Newberg, H. J., and 18 colleagues. 2002. The ghost of sagittarius and lumps in the halo of the Milky Way. ApJ, 569(Apr.), 245–274.Google Scholar
Okamoto, T. and Frenk, C. S. 2009. The origin of failed sub-haloes and the common mass scale of the Milky Way satellite galaxies. MNRAS, 399(Oct.), L174–L178.Google Scholar
Peñarrubia, J., Navarro, J. F., and McConnachie, A. W. 2008. The tidal evolution of Local Group dwarf spheroidals. ApJ, 673(Jan.), 226–240.Google Scholar
Peter, A. H. G. and Benson, A. J. 2010. Dark-matter decays and Milky Way satellite galaxies. Phys. Rev. D, 82(Dec.), 123521.Google Scholar
Polisensky, E. and Ricotti, M. 2010. Constraints on the dark matter particle mass from the number of Milky Way satellites. Bulletin of the American Astronomical Society, 42(Jan.), #408.02.Google Scholar
Press, W. H. and Schechter, P. 1974. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. ApJ, 187(Feb.), 425–438.Google Scholar
Profumo, S., Sigurdson, K., and Kamionkowski, M. 2006. What mass are the smallest protohalos?. Physical Review Letters, 97(July), 031301.Google Scholar
Reid, B. A., and 29 colleagues 2010. Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. MNRAS, 404(May), 60–85.Google Scholar
Ricotti, M. 2010. The first galaxies and the likely discovery of their fossils in the Local Group. Advances in Astronomy, 2010, 1–21.Google Scholar
Ricotti, M., Gnedin, N. Y., and Shull, J. M. 2001. Feedback from galaxy formation: production and photodissociation of primordial H2. ApJ, 560(Oct.), 580–591.Google Scholar
Simon, J. D., and 11 colleagues 2011. A complete Spectroscopic survey of the Milky Way satellite Segue 1: The darkest galaxy. ApJ, 733(May), 46.Google Scholar
Simon, J. D. and Geha, M. 2007. The kinematics of the ultrafaint Milky Way satellites: solving the missing satellite problem. ApJ, 670(Nov.), 313–331.Google Scholar
Springel, V., and 8 colleagues. 2008. The Aquarius Project: the sub-haloes of galactic haloes. MNRAS, 391(Dec.), 1685–1711.Google Scholar
Stadel, J., Potter, D., Moore, B., Diemand, J., Madau, P., Zemp, M., Kuhlen, M., and Quilis, V. 2009. Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo. MNRAS, 398(Sept.), L21–L25.Google Scholar
Stoehr, F., White, S. D. M., Tormen, G., and Springel, V. 2002. The satellite population of the Milky Way in a ACDM universe. MNRAS, 335(Oct.), L84–L88.Google Scholar
Strigari, L. E., Bullock, J. S., and Kaplinghat, M. 2007a. Determining the nature of dark matter with astrometry. ApJ, 657(Mar.), L1–L4.Google Scholar
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Diemand, J., Kuhlen, M., and Madau, P. 2007b. Redefining the missing satellites problem. ApJ, 669(Nov.), 676–683.Google Scholar
Strigari, L. E., Bullock, J. S., Kaplinghat, M., Simon, J. D., Geha, M., Willman, B., and Walker, M. G. 2008. A common mass scale for satellite galaxies of the Milky Way. Nature, 454(Aug.), 1096–1097.Google Scholar
Strigari, L. E., Frenk, C. S., and White, S. D. M. 2010. Kinematics of Milky Way satellites in a Lambda cold dark matter universe. MNRAS, 408(Nov.), 2364–2372.Google Scholar
Stringer, M., Cole, S., and Frenk, C. S. 2010. Physical constraints on the central mass and baryon content of satellite galaxies. MNRAS, 404(May), 1129–1136.Google Scholar
Tegmark, M., Silk, J., Rees, M. J., Blanchard, A., Abel, T., and Palla, F. 1997. How small were the first cosmological objects?ApJ, 474(Jan.), 1.Google Scholar
The Dark Energy Survey Collaboration 2005. The Dark Energy Survey. (Oct.), arXiv:astro-ph/0510346.
Tollerud, E. J., Bullock, J. S., Graves, G. J., and Wolf, J. 2011. From galaxy clusters to ultrafaint dwarf spheroidals: a fundamental curve connecting dispersion-supported galaxies to their dark matter halos. ApJ, 726(Jan.), 108.Google Scholar
Tollerud, E. J., Bullock, J. S., Strigari, L. E., and Willman, B. 2008. Hundreds of Milky Way satellites? Luminosity bias in the satellite luminosity function. ApJ, 688(Nov.), 277–289.Google Scholar
Tinker, J., Kravtsov, A. V., Klypin, A., Abazajian, K., Warren, M., Yepes, G., Gottlöber, S., and Holz, D. E. 2008. Toward a halo mass function for precision cosmology: the limits of universality. ApJ, 688(Dec.), 709–728.Google Scholar
van den Bergh, S. 2000. Updated information on the Local Group. PASP, 112(Apr.), 529–536.Google Scholar
van der Marel, R. P., Magorrian, J., Carlberg, R. G., Yee, H. K. C., and Ellingson, E. 2000. The velocity and mass distribution of clusters of galaxies from the CNOC1 Cluster Redshift Survey. AJ, 119(May), 2038–2052.Google Scholar
Viel, M., Becker, G. D., Bolton, J. S., Haehnelt, M. G., Rauch, M., and Sargent, W. L. W. 2008. How cold is cold dark matter? Small-scales constraints from the flux power spectrum of the high-redshift Lyman-α forest. Physical Review Letters, 100(Feb.), 041304.Google Scholar
Walker, M. G., Mateo, M., and Olszewski, E. W. 2009a. Stellar velocities in the Carina, Fornax, Sculptor, and Sextans dSph galaxies: data from the Magellan/MMFS Survey. AJ, 137(Feb.), 3100–3108.Google Scholar
Walker, M. G., Mateo, M., Olszewski, E. W., Peñarrubia, J., Wyn Evans, N., and Gilmore, G. 2009b. A universal mass profile for dwarf spheroidal galaxies?. ApJ, 704(Oct.), 1274–1287.Google Scholar
Walsh, S. M., Willman, B., and Jerjen, H. 2009. The invisibles: a detection algorithm to trace the faintest Milky Way satellites. AJ, 137(Jan.), 450–469.Google Scholar
Watkins, L. L., and 10 colleagues. 2009. Substructure revealed by RRLyraes in SDSS Stripe 82. MNRAS, 398(10/2009.), 1757–1770.Google Scholar
White, S. D. M. and Rees, M. J. 1978. Core condensation in heavy halos – a two-stage theory for galaxy formation and clustering. MNRAS, 183(May), 341–358.Google Scholar
Willman, B. 2010. In pursuit of the least luminous galaxies. Advances in Astronomy, 2010, 1–11.Google Scholar
Willman, B., and 14 colleagues. 2005. A new Milky Way dwarf galaxy in Ursa Major. ApJ, 626(June), L85–L88.Google Scholar
Wolf, J., et al. in preparation.
Wolf, J., Martinez, G. D., Bullock, J. S., Kaplinghat, M., Geha, M., Muñoz, R. R., Simon, J. D., and Avedo, F. F. 2010. Accurate masses for dispersion-supported galaxies. MNRAS, 406(Aug.), 1220–1237.Google Scholar
Xue, X. X., and 16 colleagues 2008. The Milky Way's circular velocity curve to 60 kpc and an estimate of the dark matter halo mass from the kinematics of 2400 SDSS Blue Horizontal-Branch stars. ApJ, 684(Sept.), 1143–1158.Google Scholar
Zentner, A. R. and Bullock, J. S. 2003. Halo substructure and the power spectrum. ApJ, 598(Nov.), 49–72.Google Scholar
Zucker, D. B., and 19 colleagues. 2004. A new giant stellar structure in the outer halo of M31. ApJ, 612(Sept.), L117–L120.Google Scholar
Zucker, D. B., and 32 colleagues. 2006. A new Milky Way dwarf satellite in Canes Venatici. ApJ, 643(June), L103–L106.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×