Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2006
  • Online publication date: May 2010

Hot gas in the Local Group and low-redshift intergalactic medium


There is increasing observational evidence that hot, highly ionized interstellar and intergalactic gas plays a significant role in the evolution of galaxies in the local universe. The primary spectral diagnostics of the warm-hot interstellar/intergalactic medium are ultraviolet and X-ray absorption lines of O VI and O VII. In this paper, I summarize some of the recent highlights of spectroscopic studies of hot gas in the Local Group and low-redshift universe. These highlights include investigations of the baryonic content of low-z Ovi absorbers, evidence for a hot Galactic corona or Local Group medium, and the discovery of a highly ionized high velocity cloud system around the Milky Way.


We live in a wonderful age of discovery and exploration of the universe. As we peer farther and farther back in time, it is becoming ever more important to make sure that we observe the local universe as well as possible. Observations of galactic systems and the intergalactic medium (IGM) in the low-redshift universe are required to study the universe as it has evolved over the last ∼5 billion years. They are essential for the interpretation of higher redshift systems, and they form a framework for studies of such key topics as galactic evolution, “missing mass,” and the distribution of dark matter. Studies of hot gas and its relationship to galaxies are shedding new light on these and other astronomical topics of interest today. In this review, I summarize some basic information about the elemental species and types of observations that can be used to study hot gas.

Related content

Powered by UNSILO