Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T17:33:27.967Z Has data issue: false hasContentIssue false

13 - Neonatal Jaundice and Disorders of Bilirubin Metabolism

from SECTION II - CHOLESTATIC LIVER DISEASES

Published online by Cambridge University Press:  18 December 2009

Glenn R. Gourley M.D.
Affiliation:
Professor, Department of Pediatrics; Research Director, Division of Pediatric Gastroenterology, University of Minnesota, Minneapolis, Minnesota
Frederick J. Suchy
Affiliation:
Mount Sinai School of Medicine, New York
Ronald J. Sokol
Affiliation:
University of Colorado, Denver
William F. Balistreri
Affiliation:
University of Cincinnati
Get access

Summary

Elevation of the serum bilirubin level is a common if not universal finding during the first week of life. This can be a transient phenomenon that will resolve spontaneously. Alternatively, hyperbilirubinemia may signify a serious or even potentially life-threatening condition. There are many causes of hyperbilirubinemia, and each has its own therapeutic and prognostic implications. Independent of the cause, elevated serum bilirubin levels may be potentially toxic to the newborn infant. This chapter begins with a review of perinatal bilirubin metabolism. Assessment, etiology, toxicity, and therapy for neonatal jaundice are then addressed. Finally, the diseases in which there is a primary disorder in the metabolism of bilirubin are reviewed regarding their clinical presentation, pathophysiology, diagnosis, and treatment. Other pertinent reviews have been published [1–3].

BILIRUBIN METABOLISM

Production and Circulation

In 1864, Städeler [4] used the term bilirubin, derived from Latin (bilis, “bile”; ruber, “red”), for the red-colored bile pigment. Bilirubin is formed from the degradation of heme-containing compounds (Figure 13.1). The largest source for the production of bilirubin is hemoglobin. However, other heme-containing proteins are also degraded to bilirubin, including the cytochromes, catalases, tryptophan pyrrolase, and muscle myoglobin [5].

The formation of bilirubin is initiated by cleaving the tetrapyrrole ring of protoheme (protoporphyrin IX), which results in a linear tetrapyrrole (biliverdin). The first enzyme system involved in the formation of bilirubin is microsomal heme oxygenase (HO). Two major forms of HO have been identified [6]. HO1, the inducible form, is located in the spleen and liver.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gourley, G R. Bilirubin metabolism and kernicterus. Advances in pediatrics. Adv Pediatr 1997;44:173–229.Google Scholar
Bhutani, V K, Johnson, L H, Keren, R. Diagnosis and management of hyperbilirubinemia in the term neonate: for a safer first week. Pediatr Clin North Am 2004;51:843–61, vii.CrossRefGoogle ScholarPubMed
Maisels, M J. Jaundice. In: MacDonald, M G, Seshia, M M K, Mullett, M D, eds. Avery's neonatology: pathophysiology & management of the newborn. 6th ed. Philadelphia: JB Lippincott Company, 2005:768–846.Google Scholar
Städeler, G. Ueber die farbstoffe der galle. Justus Liebigs Ann Chem 1864;132:323–54.CrossRefGoogle Scholar
Schmid, R, McDonagh, A F. The enzymatic formation of bilirubin. Ann N Y Acad Sci 1975;244:533–52.CrossRefGoogle ScholarPubMed
Maines, M D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997;37:517–54.CrossRefGoogle ScholarPubMed
Ewing, J F, Maines, M D. Histochemical localization of heme oxygenase-2 protein and MRNA expression in rat brain. Brain Res Brain Res Protoc 1997;1:165–74.CrossRefGoogle ScholarPubMed
Henningsson, R, Alm, P, Ekstrom, P, Lundquist, I. Heme oxygenase and carbon monoxide: regulatory roles in islet hormone release: a biochemical, immunohistochemical, and confocal microscopic study. Diabetes 1999;48:66–76.CrossRefGoogle ScholarPubMed
Zakhary, R, Poss, K D, Jaffrey, S R. Targeted gene deletion of heme oxygenase 2 reveals neural role for carbon monoxide. Proc Natl Acad Sci U S A 1997;94:14848–53.CrossRefGoogle ScholarPubMed
Ryter, S W, Otterbein, L E. Carbon monoxide in biology and medicine. Bioessays 2004;26:270–80.CrossRefGoogle ScholarPubMed
Fischer, H, Orth, H. Die chemie des pyrrols.Leipzig: Akademische Verlagsgesellschaft M.B.H., 1937:626.Google Scholar
O'Carra, P, Colleran, E. Methine bridge selectivity in haem-cleavage reactions: relevance to the mechanism of haem catabolism. Biochem Soc Trans 1976;4:209–14.CrossRefGoogle ScholarPubMed
Blumenthal, S G, Stucker, T, Rassmussen, R D. Changes in bilirubins in human prenatal development. Biochem J 1980;186: 693–700.CrossRefGoogle ScholarPubMed
Blumenthal, S G, Taggart, D B, Ikeda, R. Conjugated and unconjugated bilirubins in bile of human and rhesus monkeys – structure of adult human and rhesus monkey bilirubins compared with dog bilirubins. Biochem J 1977;167:535–48.CrossRefGoogle ScholarPubMed
Colleran, E, O'Carra, P. Enzymology and comparative physiology of biliverdin reduction. In: Berk, P D, Berlin, N E, eds. International symposium on chemistry and physiology of bile pigments. Washington, DC: U.S. Government Printing Office, 1977:69.Google Scholar
Bartoletti, A L, Stevenson, D K, Ostrander, C R, Johnson, J D. Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. I. Effects of gestational age and postnatal age and some common neonatal abnormalities. J Pediatr 1979;94:952–5.CrossRefGoogle Scholar
Stevenson, D K, Ostrander, C R, Cohen, R S. Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. IIb. Evidence for the possible effect of maternal prenatal glucose metabolism on postnatal bilirubin production in a mixed population of infants. Eur J Pediatr 1981;137:255–9.CrossRefGoogle Scholar
Maisels, M J, Pathak, A, Nelson, N M. Endogenous production of carbon monoxide in normal and erythroblastotic infants. J Clin Invest 1971;50:1–8.CrossRefGoogle Scholar
Bloomer, J R, Berk, P D, Howe, R B. Comparison of fecal urobilinogen excretion with bilirubin production in normal volunteers and patients with increased bilirubin production. Clin Chim Acta 1970;29:463.CrossRefGoogle ScholarPubMed
Whipple, G H, Hooper, C W. Bile pigment metabolism. VII. Bile pigment output influenced by hemoglobin injections, anemia and blood regeneration. Am J Physiol 1917;43:258–74.Google Scholar
London, I M. Conversion of hematin to bile pigment. J Biol Chem 1950;184:373–6.Google ScholarPubMed
Ostrow, J D, Jandle, J G, Schmid, R. The formation of bilirubin from hemoglobin in vivo. J Clin Invest 1962;41:1628–37.CrossRefGoogle ScholarPubMed
Coburn, R F, Kane, P B. Maximal erythrocyte and hemoglobin catabolism. J Clin Invest 1968;47:1435–46.CrossRefGoogle ScholarPubMed
Daly, J S, Little, J M, Troxler, R F, Lester, R. Metabolism of 3H-myoglobin. Nature 1967;216:1030–1.CrossRefGoogle ScholarPubMed
London, I M, West, R. The formation of bile pigment in pernicious anemia. J Biol Chem 1950;184:359–64.Google ScholarPubMed
Gray, C H, Scott, J J. The effect of haemorrhage on the incorporation [α-C14] glycine into stercobilin. J Biochem 1959;71:38–42.CrossRefGoogle ScholarPubMed
Robinson, S H, Tsong, M, BrownBW, and et al BW, and et al. The sources of bile pigment in the rat: studies of early labeled fraction. J Clin Invest 1966;45:1569–86.CrossRefGoogle ScholarPubMed
Sedlak, T W, Snyder, S H. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004;113:1776–82.CrossRefGoogle ScholarPubMed
Bonnett, R, Davies, J E, Hursthouse, M B. Structure of bilirubin. Nature 1976;262:327–8.CrossRefGoogle ScholarPubMed
Bennhold, H. Uber die vehikelfunktion der serumeiweisskorper. Ergebnisse Inneren Medizin Kinderheilkunde 1932;42:273–375.Google Scholar
Jacobsen, J. Binding of bilirubin to human serum albumin – determination of the dissociation constants. FEBS Lett 1969;5: 112–14.CrossRefGoogle ScholarPubMed
Robertson, A, Karp, W, Brodersen, R. Comparison of the binding characteristics of serum albumins from various animal species. Dev Pharmacol Ther 1990;15:106–11.CrossRefGoogle ScholarPubMed
Vracko, R. Basal lamina scaffold. Anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 1974;77:314–38.Google ScholarPubMed
Schaffner, F, Popper, H. Capillarization of hepatic sinusoids in man. Gastroenterology 1963;44:239–42.Google ScholarPubMed
Bloomer, J R, Berk, P D, Vergalla, J, Berlin, N I. Influence of albumin on the hepatic uptake of unconjugated bilirubin. Clin Sci Mol Med 1973;45:505–16.Google ScholarPubMed
Scharschmidt, B F, Waggoner, J G, Berk, P D. Hepatic organic anion uptake in the rat. J Clin Invest 1975;56:1280–92.CrossRefGoogle ScholarPubMed
Zucker, S D, Goessling, W, Hoppin, A G. Unconjugated bilirubin exhibits spontaneous diffusion through model lipid bilayers and native hepatocyte membranes. J Biol Chem 1999;274:10852–62.CrossRefGoogle ScholarPubMed
Wolkoff, A W, Chung, C T. Identification, purification and partial characterization of an organic anion binding protein from rat liver plasma membrane. J Clin Invest 1980;65:1152–61.CrossRefGoogle Scholar
Wolkoff, A W, Sosiak, A, Greenblutt, H C. Immunologic studies on an organic anion-binding protein isolated from rat liver cell plasma membrane. J Clin Invest 1985;76:454–9.CrossRefGoogle Scholar
Stremmel, W, Gerber, M, Glezerov, V. Physiochemical and immunohistological studies of a sulfobromophthalein- and bilirubin-binding protein from rat liver plasma membranes. J Clin Invest 1983;71:1796–805.CrossRefGoogle Scholar
Cui, Y, Konig, J, Leier, I. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 2001;276:9626–30.CrossRefGoogle ScholarPubMed
Cui, Y, Walter, B. Influence of albumin binding on the substrate transport mediated by human hepatocyte transporters OATP2 and OATP8. J Gastroenterol 2003;38:60–8.CrossRefGoogle ScholarPubMed
Wolkoff, A W, Weisiger, R A, Jakoby, W B. The multiple roles of the glutathione transferases (ligandin). Prog Liver Dis 1979;6:213–24.Google Scholar
Wolkoff, A W, Goresky, C A, Sellin, J. Role of ligandin in transfer of bilirubin from plasma into liver. Am J Physiol 1979;236:E638–48.Google ScholarPubMed
Boyer, T D. The glutathione S-transferases: an update. Hepatology 1989;9:486–96.CrossRefGoogle ScholarPubMed
Dutton, G J. The biosynthesis of glucuronides. In: Dutton, G J. Glucuronic acid, free and combined: chemistry, biochemistry, pharmacology and medicine. London: Academic Press, 1966:186–299.Google Scholar
Burchell, B. Substrate specificity and properties of uridine diphosphate glucuronyltransferase purified to apparent homogeneity from phenobarbital-treated rat liver. Biochem J 1978;173:749–57.CrossRefGoogle ScholarPubMed
Bock, K W, Josting, D, Lilienblum, W, Pfeil, H. Purification of rat liver microsomal UDP-glucuronyltransferase. Separation of two enzyme forms inducible by 3-methylcholanthrene or phenobarbital. Eur J Pediatr 1979;98:19–26.Google ScholarPubMed
Falany, C N, Tephly, T R. Separation, purification and characterization of three isozymes of UDP-glucuronyltransferase from rat liver microsomes. Arch Biochem Biophys 1983;227:248–58.CrossRefGoogle ScholarPubMed
Matern, H, Matern, S, Gerok, W. Isolation and characterization of rat liver microsomal UDP-glucuronsyltransferase activity toward chenodeoxycholic acid and testosterone as a single form of enzyme. J Biol Chem 1982;257:7422–9.Google Scholar
Roy Chowdhury, N, Gross, F, Moscioni, A D. Isolation of multiple normal and functionally defective forms of uridine diphosphate-glucuronosyl-transferase from inbred Gunn rats. J Clin Invest 1987;79:327–34.CrossRefGoogle Scholar
Senafi, S B, Clarke, D J, Burchell, B. Investigation of the substrate specificity of a cloned expressed human bilirubin UDP-glucuronosyltransferase: UDP-sugar specificity and involvement in steroid and xenobiotic glucuronidation. Biochem J 1994;303(pt 1):233–40.CrossRefGoogle Scholar
Pogell, B M, LeLoir, L F. Nucleotide activation of liver microsomal glucuronidation. J Biol Chem 1961;236:293–8.Google ScholarPubMed
Berry, C, Hallinan, T. Summary of a novel, three-component regulatory model for uridine diphosphate glucuronyltransferase. Biochem Soc Trans 1976;4:650–2.CrossRefGoogle ScholarPubMed
Kuriyama, T. Studies on microsomal nucleoside diphosphatase of rat hepatocytes. Its purification, intramembranous location and turnover. J Biol Chem 1972;247:2979–88.Google Scholar
Bosma, P J, Seppen, J, Goldhoorn, B. Bilirubin UDP-glucuronosyltransferase 1 is the only relevant bilirubin glucuronidating isoform in man. J Biol Chem 1994;269:17960–4.Google ScholarPubMed
Ritter, J K, Chen, F, Sheen, Y. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem 1992;267:3257–61.Google ScholarPubMed
Clarke, D J, Moghrabi, N, Monaghan, G. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin Chim Acta 1997;266:63–74.CrossRefGoogle ScholarPubMed
Gong, Q H, Cho, J W, Huang, T. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics 2001;11:357–68.CrossRefGoogle ScholarPubMed
Mackenzie, P I, Owens, I S, Burchell, B. The UDP glycosyltransferase gene superfamily: recommmended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997;7:255–69.CrossRefGoogle Scholar
Blanckaert, N, Gollan, J, Schmid, R. Bilirubin diglucuronide synthesis by a UDP-glucuronic acid-dependent enzyme system in rat liver microsomes. Proc Natl Acad Sci U S A 1979;76:23037–41.CrossRefGoogle ScholarPubMed
Gordon, E R, Meier, P J, Goresky, C A, Boyer, J L. Mechanism and subcellular site of bilirubin diglucuronide formation in rat liver. J Biol Chem 1984;259:5500–6.Google ScholarPubMed
Hauser, S C, Ziurys, J C, Gollan, J L. Regulation of bilirubin glucuronide synthesis in primate (Macaca fascicularis) liver – kinetic analysis of microsomal bilirubin uridine diphosphate glucuronyltransferase. Gastroenterology 1986;91:287–96.CrossRefGoogle ScholarPubMed
Burchell, B, Blanckaert, N. Bilirubin mono- and diglucuronide formation by purified rat liver microsomal bilirubin UDP-glucuronyltransferase. Biochem J 1984;223:461–5.CrossRefGoogle ScholarPubMed
Chowdhury, N R, Arias, I M, Lederstein, M, Chowdury, J R. Substrates and products of purified rat liver bilirubin UDP-glucuronsyltransferase. Hepatology 1986;6:123–8.CrossRefGoogle Scholar
Maruo, Y, Iwai, M, Mori, A. Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Curr Drug Metab 2005;6:91–9.CrossRefGoogle ScholarPubMed
Fevery, J, Damme, B, Mechiel, R. Bilirubin conjugates in bile of man and rat in the normal state and in liver disease. J Clin Invest 1972;51:2482–92.CrossRefGoogle ScholarPubMed
Gordon, E R, Goresky, C A, Chan, T H, Perlin, A S. The isolation and characterization of bilirubin diglucuronide, the major bilirubin conjugate in dog and human bile. Biochem J 1976;155:477–86.CrossRefGoogle ScholarPubMed
Sinaasappel, M, Jansen, P L. The differential diagnosis of Crigler–Najjar disease, types 1 and 2, by bile pigment analysis. Gastroenterology 1991;100:783–9.CrossRefGoogle ScholarPubMed
Fevery, J, Blanckaert, N, Heirwegh, K P M. Unconjugated bilirubin and an increased proportion of bilirubin monoconjugates in the bile of patients with Gilbert's syndrome and Crigler–Najjar disease. J Clin Invest 1977;60:970–9.CrossRefGoogle ScholarPubMed
Fevery, J, Blanckaert, N, Leroy, P. Analysis of bilirubins in biological fluids by extraction and thin-layer chromatography of the intact tetrapyrrole: application to bile of patients with Gilbert's syndrome, hemolysis, or cholelithiasis. Hepatology 1983;3:177–83.CrossRefGoogle ScholarPubMed
Goresky, C A, Gordon, E R, Shaffer, E A. Definition of a conjugation dysfunction in Gilbert's syndrome: studies of the handling of bilirubin loads and of the pattern of bilirubin conjugates secreted in bile. Clin Sci 1978;55:63–71.CrossRefGoogle ScholarPubMed
Adachi, Y, Kobayashi, H, Kurumi, Y. Bilirubin diglucuronide transport by rat liver canalicular membrane vesicles: stimulation by biocarbonate ion. Hepatology 1991;14:1251–8.Google Scholar
Nishida, T, Gatmaitan, Z, Roy-Chowdhry, J, Arias, I M. Two distinct mechanisms for bilirubin glucuronide transport by rat bile canalicular membrane vesicles. Demonstration of defective ATP-dependent transport in rats (TR−) with inherited conjugated hyperbilirubinemia. J Clin Invest 1992;90:2130–5.CrossRefGoogle ScholarPubMed
Paulusma, C C, Oude, Elferink, R P. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. J Mol Med 1997;75:420–8.CrossRefGoogle ScholarPubMed
Keppler, D, Konig, J. Hepatic canalicular membrane 5: expression and localization of the conjugate export pump encoded by the MRP2 (CMRP(CMOAT) gene in liver. FASEB J 1997;11:509–16.CrossRefGoogle ScholarPubMed
Chandra, P, Brouwer, K L. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res 2004;21:719–35.CrossRefGoogle ScholarPubMed
Paulusma, C C, Bosma, P J, Zaman, G J. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science 1996;271:1126–8.CrossRefGoogle Scholar
Kamisako, T, Leier, I, Cui, Y. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999;30:485–90.CrossRefGoogle ScholarPubMed
Keppler, D, Leier, I, Jedlitschky, G. The function of the multidrug resistance proteins (MRP and CMRP) in drug conjugate transport and hepatobiliary excretion. Adv Enzyme Regul 1996;36:17–29.CrossRefGoogle ScholarPubMed
Wada, M, Toh, S, Taniguchi, K. Mutations in the canilicular multispecific organic anion transporter (CMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II(Dubin-Johnson syndrome. Hum Mol Genet 1998;7:203–7.CrossRefGoogle ScholarPubMed
Erlinger, S. Physiology of bile flow. Prog Liver Dis 1975;4:63–82.Google Scholar
Weinbren, K, Billing, B H. Hepatic clearance of bilirubin as an index of cellular function in the regenerating rat liver. Br J Exper Pathol 1956;37:199–204.Google ScholarPubMed
Natzschka, J C, Odell, G B. The influence of albumin on the distribution and excretion of bilirubin in jaundiced rats. Pediatrics 1966;37:51–61.Google ScholarPubMed
Albert, S, Mosher, M, Shanske, A, Arias, I M. Multiplicity of hepatic excretory mechanisms for organic anions. J Gen Physiol 1969;53:238–47.CrossRefGoogle Scholar
Hargreaves, T, Lathe, G H. Inhibitory aspects of bile secretion. Nature 1963;200:1172–6.CrossRefGoogle ScholarPubMed
Clarenburg, R, Kao, C C. Shared and separate pathways for biliary excretion of bilirubin and BSP in rats for biliary excretion of bilirubin and BSP in rats. Am J Physiol 1973;225:192–200.Google ScholarPubMed
Schoenfield, L J, McGill, D B, Hunton, D B. Studies of chronic idiopathic jaundice (Dubin-Johnson syndrome). I. Demonstration of hepatic excretory defect. Gastroenterology 1963;44:101–11.Google ScholarPubMed
Goresky, C A, Haddad, H H, Kluger, W S. The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. Can J Physiol Pharmacol 1974;52:389–403.CrossRefGoogle ScholarPubMed
Roberts, R J, Plaa, G S. Effect of phenobarbital on the excretion of an exogenous bilirubin load. Biochem Pharmacol 1967;16:827–35.CrossRefGoogle ScholarPubMed
Gallagher, T F, Mueller, M N, Kappas, A. Estrogen pharmacology. IV. Studies on the structural basis for estrogen-induced impairment of liver function. Medicine 1966;45:471–9.CrossRefGoogle ScholarPubMed
Zimmerman, H J. Hormonal derivatives and other drugs used to treat endocrine disease. In: Hepatotoxicity. The adverse effects of drug and other chemicals on the liver. New York: Appleton, Crofts, 1978:436–67.Google Scholar
Fevery, J, Blanckaert, N. Review. What can we learn from analysis of serum bilirubin? J Hepatol 1986;2:113–21.Google Scholar
Muraca, M, Fevery, J, Blanckaert, N. Relationships between serum bilirubins and production and conjugation of bilirubin – studies in Gilbert's syndrome, Crigler-Najjar disease, hemolytic disorders, and rat models. Gastroenterology 1987;92:309–17.CrossRefGoogle ScholarPubMed
Steenbergen, W, Fevery, J. Effects of uridine diphosphate glucuronosyltransferase activity on the maximal secretion rate of bilirubin conjugates in the rat. Gastroenterology 1990;99:488–99.CrossRefGoogle ScholarPubMed
Sieg, A, Stiehl, A, Raedsch, R. Gilbert's syndrome: diagnosis by typical serum bilirubin pattern. Clin Chim Acta 1986;154:41–7.CrossRefGoogle ScholarPubMed
Ullrich, D, Fevery, J, Sieg, A. The influence of gestational age on bilirubin conjugation in newborns. Eur J Clin Invest 1991;21:83–9.CrossRefGoogle ScholarPubMed
Weiss, J S, Guatam, A, Lauff, J J. The clinical importance of a protein-bound fraction of serum bilirubin in patients with hyperbilirubinemia. N Engl J Med 1983;309:147–50.CrossRefGoogle ScholarPubMed
Brett, E M, Hicks, J M, Powers, D M, Rand, R N. Delta bilirubin in serum of pediatric patients: correlations with age and disease. Clin Chem 1984;30:1561–4.Google ScholarPubMed
Breemen, R B, Fenselau, C. Acylation of albumin by 1-O-acyl glucuronides. Drug Metab Dispos 1985;13:318–20.Google ScholarPubMed
Stogniew, M, Fenselau, C. Electrophilic reactions of acyl-linked glucuronides-formation of clofibrate mercapturate in humans. Drug Metab Dispos 1982;10:609–13.Google ScholarPubMed
Breemen, R B. Electrophilic reactions of 1-O-acyl glucuronides [dissertation]. Baltimore: Johns Hopkins University, 1985.Google Scholar
Berson, S A, Yalow, R S, Schreiber, S S. Tracer experiments with I131 labeled human serum albumin: distribution and degradation studies. J Clin Invest 1953;32:746–68.CrossRefGoogle ScholarPubMed
Billing, B H. Intestinal and renal metabolism of bilirubin including enterohepatic circulation. In: Ostrow, J D. Bile pigments and jaundice. New York: Marcel Dekker, 1986;255–69.Google Scholar
Midtvedt, T, Gustafsson, B E. Microbial conversion of bilirubin to urobilins in vitro and in vivo. Acta Pathol Microbiol Immunol Scand [B] 1981;89:57–60.Google ScholarPubMed
Fahmy, K, Gray, C H, Nicholson, D C. The reduction of bile pigments by faecal and intestinal bacteria. Biochim Biophys Acta 1972;264:85–97.CrossRefGoogle ScholarPubMed
Poland, R L, Odell, G B. Physiologic jaundice: the enterohepatic circulation of bilirubin. NEngl J Med 1971;284:1–6.CrossRefGoogle ScholarPubMed
Vitek, L, Zelenka, J, Zadinova, M, Malina, J. The impact of intestinal microflora on serum bilirubin levels. J Hepatol 2005;42:238–43.CrossRefGoogle ScholarPubMed
Hawksworth, G, Drasar, B S, Hill, M J. Intestinal bacteria and the hydrolysis of glycosidic bonds. J Med Microbiol 1971;4:451–9.CrossRefGoogle ScholarPubMed
Kent, T H, Fischer, L J, Marr, R. Glucuronidase activity in intestinal contents of rat and man and relationship to bacterial flora. Proc Soc Exp Biol Med 1972;140:590–4.CrossRefGoogle ScholarPubMed
Nanno, M, Morotomi, M, Takayama, H. Mutagenic activation of biliary metabilites of benzo(a)pyrene by beta-glucuronidase-positive bacteria in human faeces. J Med Microbiol 1986;22:351–5.CrossRefGoogle Scholar
Musa, B U, Doe, R P, Seal, U S. Purification and properties of human liver β-glucuronidase. J Biol Chem 1965;240:2811–16.Google ScholarPubMed
Lester, R, Schmid, R. Intestinal absorption of bile pigments. I. The enterohepatic circulation of bilirubin in the cat. J Clin Invest 1963;42:736–46.CrossRefGoogle Scholar
Gourley, G R, Arend, R A. β-glucuronidase and hyperbilirubinemia in breast-fed and formula-fed babies. Lancet 1986;i:644–6.CrossRefGoogle Scholar
Saxerholt, H, Skar, V, Midtvedt, T. HPLC separation and quantification of bilirubin and its glucuronide conjugates in faeces and intestinal contents of germ-free rats. Scand J Clin Lab Invest 1990;50:487–95.CrossRefGoogle ScholarPubMed
Gourley, G R. Pathophysiology of breast-milk jaundice. In: Polin, R A, Fox, W W. Fetal and neonatal physiology. 2nd ed. Philadelphia: WB Saunders Company, 1998:1499–505.Google Scholar
Kreamer, B L, Siegel, F L, Gourley, G R. A novel inhibitor of β-glucuronidase: L-aspartic acid. Pediatr Res 2001;50:460–6.CrossRefGoogle ScholarPubMed
Gourley, G R, Li, Z, Kreamer, B L, Kosorok, M R. A controlled, randomized, double-blind trial of prophylaxis against jaundice among breastfed newborns. Pediatrics 2005;116:385–91.CrossRefGoogle ScholarPubMed
Newman, T B, Easterling, M J, Goldman, E S, Stevenson, D K. Laboratory evaluation of jaundice in newborns – frequency, cost and yield. Am J Dis Child 1990;144:364–8.CrossRefGoogle ScholarPubMed
Rutledge, J C, Ou, C N. Bilirubin and the laboratory. Advances in the 1980s, considerations for the 1990s. Pediatr Clin North Am 1989;36:189–97.CrossRefGoogle Scholar
Schreiner, R L, Glick, M R. Interlaboratory bilirubin variability. Pediatrics 1982;69:277–81.Google ScholarPubMed
Rosenthal, P, Keefe, M T, Henton, D. Total and direct-reacting bilirubin values by automated methods compared with liquid chromatography and with manual methods for determining delta bilirubin. Clin Chem 1990;36:788–91.Google Scholar
Westwood, A. The analysis of bilirubin in serum. Ann Clin Biochem 1991;28:119–30.CrossRefGoogle ScholarPubMed
Vreman, H J, Verter, J, Oh, W. Interlaboratory variability of bilirubin measurements. Clin Chem 1996;42:869–73.Google ScholarPubMed
Schlebusch, H, Axer, K, Schneider, C. Comparison of five routine methods with the candidate reference method for the determination of bilirubin in neonatal serum. J Clin Chem Clin Biochem 1990;28:203–10.Google ScholarPubMed
Mair, B, Klempner, L B. Abnormally high values for direct bilirubin in the serum of newborns as measured with the DuPont Aca. Am J Clin Pathol 1987;87:642–4.CrossRefGoogle ScholarPubMed
Blanckaert, N, Kabra, P M, Farina, F A. Measurement of bilirubin and its monoconjugates and diconjugates in human serum by alkaline methanolysis and high-performance liquid chromatography. J Lab Clin Med 1980;96:198–212.Google ScholarPubMed
Wu, T W, Dappen, G M, Powers, D M. The Kodak EKTACHEM clinical chemistry slide for measurement of bilirubin in newborns: principles and performance. Clin Chem 1982;28:2366–72.Google ScholarPubMed
Wu, T W, Dappen, G M, Spayd, R W. The EKTACHEM clinical chemistry slide for simultaneous determination of unconjugated and sugarconjugated bilirubin. Clin Chem 1984;30:1304–9.Google ScholarPubMed
Mullon, C, Langer, R. Determination of conjugated and total bilirubin in serum of neonates, with use of bilirubin oxidase. Clin Chem 1987;33:1822–5.Google ScholarPubMed
Muraca, M, Rubaltelli, F F, Blanckaert, N, Fevery, J. Unconjugated and conjugated bilirubin pigments during perinatal development. II. Studies on serum of healthy newborns and of neonates with erythroblastosis fetalis. Biol Neonate 1990;57:1–9.CrossRefGoogle ScholarPubMed
Arvan, D, Shirey, T L. Conjugated bilirubin: a better indicator of impaired hepatobiliary excretion than direct bilirubin. Ann Clin Lab Sci 1985;15:252–9.Google ScholarPubMed
Schlebusch, H, Schneider, C. Enzymatic determination of bilirubin in serum of newborns – any advantage over previous methods?Ann Clin Biochem 1991;28:290–6.CrossRefGoogle ScholarPubMed
Leslie, G I, Phillips, J B, Cassady, G. Capillary and venous bilirubin values: are they really different?Am J Dis Child 1987;141:1199–200.CrossRefGoogle ScholarPubMed
Eidelman, A I, Schimmel, M S. Capillary and venous bilirubin values: they are different – and how!Am J Dis Child 1989;143:642.Google Scholar
Maisels, M J. Capillary, vs. venous bilirubin values. Am J Dis Child 1990;144:521–2.Google ScholarPubMed
Bhutani, V K, Gourley, G R, Adler, S. Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia. Pediatrics 2000;106:e17.CrossRefGoogle Scholar
Rubaltelli, F F, Gourley, G R, Loskamp, N. Transcutaneous bilirubin measurement: a multi-centre evaluation of a new device. Pediatrics 2001;107:1264–71.CrossRefGoogle Scholar
Maisels, M J, Ostrea, E M, Touch, S. Evaluation of a new transcutaneous bilirubinometer. Pediatrics 2004;113:1628–35.CrossRefGoogle ScholarPubMed
Knudsen, A, Brodersen, R. Skin color and bilirubin in neonates. Arch Dis Child 1989;64:605–9.CrossRefGoogle ScholarPubMed
Schumacher, R E, Thornbery, J M, Gutcher, G R. Transcutaneous bilirubinometry: a comparison of old and new methods. Pediatrics 1985;76:10–14.Google ScholarPubMed
Gossett, I H, Oxon, B M. A perspex icterometer for neonates. Lancet 1960;i:87–8.CrossRefGoogle Scholar
Bilgen, H, Ince, Z, Ozek, E. Transcutaneous measurement of hyperbilirubinaemia: comparison of the Minolta jaundice meter and the Ingram icterometer. Ann Trop Paediatr 1998;18:325–8.CrossRefGoogle ScholarPubMed
Knudsen, A. The cephalocaudal progression of jaundice in newborns in relation to the transfer of bilirubin from plasma to skin. Early Hum Dev 1990;22:23–8.CrossRefGoogle Scholar
Kramer, L I. Advancement of dermal icterus in the jaundiced newborn. Am J Dis Child 1969;118:454–8.Google ScholarPubMed
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004;114:297–316.CrossRef
Schneider, A P. Breast milk jaundice in the newborn – a real entity. JAMA 1986;255:3270–4.CrossRefGoogle ScholarPubMed
Johnson, L, Brown, A K. A pilot registry for acute and chronic kernicterus in term and near-term infants. Pediatrics 1999;104:736.Google Scholar
Brown, A K, Johnson, L. Loss of concern about jaundice and the re-emergence of kernicterus in full term infants in the era of managed care. In: Fanaroff, A, Klaus, M. Yearbook of neonatal and perinatal medicine. St. Louis: Mosby, 1996:xviii–xxviii.
Ebbesen, F. Recurrence of kernicterus in term and near-term infants in Denmark. Acta Paediatr 2000;89:1213–17.CrossRefGoogle ScholarPubMed
Bhutani, V K, Johnson, L H. Newborn jaundice and kernicterus – health and societal perspectives. Indian J Pediatr 2003;70:407–16.CrossRefGoogle ScholarPubMed
Liu, L L, Clemens, C J, Shay, D K. The safety of newborn early discharge. The Washington State experience. JAMA 1997;278:293–8.CrossRefGoogle ScholarPubMed
Gourley, G R. Breast-feeding, neonatal jaundice and kernicterus. Semin Neonatol 2002;7:135–41.CrossRefGoogle ScholarPubMed
Salem-Schatz, S, Peterson, L E, Palmer, R H. Barriers to first-week follow-up of newborns: findings from parent and clinician focus groups. Jt Comm J Qual Saf 2004;30:593–601.CrossRefGoogle ScholarPubMed
Szabo, P, Wolf, M, Bucher, H U. Detection of hyperbilirubinaemia in jaundiced full-term neonates by eye or by bilirubinometer?Eur J Pediatr 2004;163:722–7.CrossRefGoogle ScholarPubMed
Shell, E R. The hospital hustle. Parenting 1990;4:57–61.Google Scholar
Johnson, L. Hyperbilirubinemia in the term infant: when to worry, when to treat. N Y State J Med 1991;91:483–7.Google ScholarPubMed
Joint Commission on Accreditation of Healthcare Organizations. Kernicterus threatens healthy newborns. Sentinel Event Alert, issue 18, April 2001.
Anonymous. Kernicterus in full-term infants – United States, 1994–1998. MMWR 2001;50:491–4.
Maisels, M J, Newman, T B. Kernicterus in otherwise healthy, breast-fed term newborns. Pediatrics 1995;96:730–3.Google ScholarPubMed
American Academy of Pediatrics Subcommittee on Neonatal Hyperbilirubinemia. Neonatal jaundice. Pediatrics 2001;108:763–5.
Johnson, L H, Bhutani, V K, Brown, A K. System-based approach to management of neonatal jaundice and prevention of kernicterus. J Pediatr 2002;140:396–403.CrossRefGoogle ScholarPubMed
Committee on Fetus and Newborn. Hospital stay for healthy newborns. Pediatrics 1995;96:788–90.
Madlon-Kay, D J. Evaluation and management of newborn jaundice by Midwest family physicians. J Fam Pract 1998;47:461–4.Google ScholarPubMed
Maisels, M J, Newman, T B. Jaundice in full-term and near-term babies who leave the hospital within 36 hours. The pediatrician's nemesis. Clin Perinatol 1998;25:295–302.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics. Practice parameter: management of hyperbilirubinemia in the healthy term newborn. Pediatrics 1994;94:558–65.
Newman, T B, Hope, S, Stevenson, D K. Direct bilirubin measurements in jaundiced term newborns. A reevaluation. Am J Dis Child 1991;145:1305–9.CrossRefGoogle Scholar
Keffler, S, Kelly, D A, Powell, J E, Green, A. Population screening for neonatal liver disease: a feasibility study. J Pediatr Gastroenterol Nutr 1998;27:306–11.CrossRefGoogle ScholarPubMed
Bhutani, V K, Johnson, L, Sivieri, E M. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. Pediatrics 1999;103:6–14.CrossRefGoogle ScholarPubMed
Johnson, L, Bhutani, V K. Guidelines for management of the jaundiced term and near-term infant. Clin Perinatol 1998;25:555–74.CrossRefGoogle ScholarPubMed
Maisels, M J. Neonatal jaundice. In: Avery, G B. Neonatalogy – pathophysiology and management of the newborn. Philadelphia: JB Lippincott, 1987:534–629.Google Scholar
Linn, S, Schoenbaum, S C, Monson, R R. Epidemiology of neonatal hyperbilirubinemia. Pediatrics 1985;75:770–4.Google ScholarPubMed
Bracci, R, Buonocore, G, Garosi, G. Epidemiologic study of neonatal jaundice – a survey of contributing factors. Acta Paediatr Scand Suppl 1989;360:87–92.CrossRefGoogle ScholarPubMed
Johnson, C A, Liese, B S, Hassanein, R E. Factors predictive of heightened third-day bilirubin levels: a multiple stepwise regression analysis. Fam Med 1989;21:283–7.Google ScholarPubMed
Meyer, L, Mailloux, J, Blanchet, P. Maternal and neonatal morbidity in instrumental deliveries with the Kobayashi vacuum extractor and low forceps. Acta Obstet Gynecol Scand 1987;66:643–7.CrossRefGoogle ScholarPubMed
Freeman, J, Lesko, S M, Mitchell, A A. Hyperbilirubinemia following exposure to pancuronium bromide in newborns. Dev Pharmacol Ther 1990;14:209–15.Google ScholarPubMed
Knudsen, A. Prediction of the development of neonatal jaundice by increased umbilical cord blood bilirubin. Acta Paediatr Scand 1989;78:217–21.CrossRefGoogle ScholarPubMed
Knudsen, A, Lebech, M. Maternal bilirubin, cord bilirubin, and placenta function at delivery and the development of jaundice in mature newborns. Acta Obstet Gynecol Scand 1989;68:719–24.CrossRefGoogle ScholarPubMed
Diwan, V K, Vaughan, T L, Yang, C Y. Maternal smoking in relation to the incidence of early neonatal jaundice. Gynecol Obstet Invest 1989;27:22–5.CrossRefGoogle ScholarPubMed
Zipursky, A. Mechanisms of hemolysis. Mead Johnson Symp Perinat Dev Med 1982;17–24.Google ScholarPubMed
Wenk, R E, Goldstein, P, Felix, J K. Kell alloimmunization, hemolytic disease of the newborn, and perinatal management. Obstet Gynecol 1985;66:473–6.Google ScholarPubMed
Sieg, A, Konig, R, Ullrich, D, Fevery, J. Subfractionation of serum bilirubins by alkaline methanolysis and thin-layer chromatography. An aid in the differential diagnosis of icteric diseases. J Hepatol 1990;11:159–64.CrossRefGoogle ScholarPubMed
Bevis, D C A. The antenatal prediction of hemolytic disease of the newborn. Lancet 1952;i:395–8.CrossRefGoogle Scholar
Odell, G B. Evaluation of fetal hemolysis. N Engl J Med 1970;282:1204–5.CrossRefGoogle ScholarPubMed
Frigoletto, F D, Greene, M F, Benacerraf, B R. Ultrasonographic fetal surveillance in the management of the isoimmunized pregnancy. N Engl J Med 1986;315:430–2.CrossRefGoogle ScholarPubMed
Vintzileos, A M, Campbell, W A, Storlazzi, E. Fetal liver ultrasound measurements in isoimmunized pregnancies. Obstet Gynecol 1986;62:162–7.Google Scholar
Grannum, P A, Copel, J A, Plaxe, S C. In utero exchange transfusion by direct intravascular injection in severe erythroblastosis fetalis. N Engl J Med 1986;314:1431–4.CrossRefGoogle ScholarPubMed
Queenan, J T. Erythroblastosis fetalis: closing the circle. N Engl J Med 1986;314:1448–9.CrossRefGoogle ScholarPubMed
Clarke, C A. Prevention of Rh-hemolytic disease. Br Med J 1967;4:484–5.CrossRefGoogle ScholarPubMed
Allen, F H, Diamond, L K. Erythroblastosis fetalis, including exchange transfusion technique. Boston: Little, Brown and Co., 1958.Google Scholar
Gottstein, R, Cooke, R W. Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn. Arch Dis Child Fetal Neonatal Ed 2003;88:F6–10.CrossRefGoogle ScholarPubMed
Sato, K, Hara, T, Kondo, T. High-dose intravenous gammaglobulin therapy for neonatal immune haemolytic jaundice due to blood group incompatibility. Acta Paediatr Scand 1991;80:163–6.CrossRefGoogle ScholarPubMed
Rubo, J, Albrecht, K, Lasch, P. High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 1992;121:93–7.CrossRefGoogle ScholarPubMed
Hammerman, C, Kaplan, M, Vreman, H J, Stevenson, D K. Intravenous immune globulin in neonatal ABO isoimmunization: factors associated with clinical efficacy. Biol Neonate 1996;70:69–74.CrossRefGoogle ScholarPubMed
Feng, C S, Wan, C P, Lau, J. Incidence of ABO haemolytic disease of the newborn in a group of Hong Kong babies with severe neonatal jaundice. J Paediatr Child Health 1990;26:155–7.CrossRefGoogle Scholar
Apt, L, Downey, W S. Melena neonatorum: the “swallowed blood syndrome.”J Pediatr 1955;47:6–12.CrossRefGoogle ScholarPubMed
Jacobs, D S, Kasten, B L, Demott, W R, Wolfson, W L. APT test. Laboratory test handbook with DRG index. St. Louis: Mosby/Lexi-Comp, 1984:277.Google Scholar
Danish, E H. Neonatal polycythemia. In: Brown, E B. Progress in hematology. Vol. 14. New York: Grune and Stratton, 1986:55–98.Google Scholar
Oh, W. Neonatal polycythemia and hyperviscosity. Pediatr Clin North Am 1986;33:523–32.CrossRefGoogle ScholarPubMed
Mimouni, F, Miodovnik, M, Siddiqi, T A. Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986;68:370–2.CrossRefGoogle ScholarPubMed
Schimmel, M S, Bromiker, R, Soll, R F. Neonatal polycythemia: is partial exchange transfusion justified?Clin Perinatol 2004;31:545–53.CrossRefGoogle ScholarPubMed
Wong, W Y, Powars, D R, Abdalla, C, Wu, P Y. Phototherapy failure in jaundiced newborns with hereditary spherocytosis. Acta Paediatr Scand 1990;79:368–9.CrossRefGoogle ScholarPubMed
Owa, J A. Relationship between exposure to icterogenic agents, glucose-6-phosphate dehydrogenase deficiency and neonatal jaundice in Nigeria. Acta Paediatr Scand 1989;78:848–52.CrossRefGoogle ScholarPubMed
Kaplan, M, Hammerman, C. Severe neonatal hyperbilirubinemia. A potential complication of glucose-6-phosphate dehydrogenase deficiency. Clin Perinatol 1998;25:575–90.CrossRefGoogle ScholarPubMed
Anonymous. Glucose-6-phosphate dehydrogenase deficiency. WHO Working Group. Bull World Health Organ 1989;67:601–11.
Liang, S T, Wong, V C W, So, W W. Homozygous α-thalassemia: clinical presentation, diagnosis and management: a review of 46 cases. Br J Obstet Gynaecol 1985;92:680–4.CrossRefGoogle ScholarPubMed
Kan, Y W, Forget, B G, Nathan, D G. Gamma-beta thalassemia: a cause of hemolytic disease of the newborn. N Engl J Med 1972;286:129–34.CrossRefGoogle ScholarPubMed
Laosombat, V, Dissaneevate, S, Peerapittayamongkol, C, Matsuo, M. Neonatal hyperbilirubinemia associated with southeast asian ovalocytosis. Am J Hematol 1999;60:136–9.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Singhi, S, Chookang, E, Hall, J S E. Intrapartum infusion of aqueous glucose solution, transplacental hyponatraemia, and risk of neonatal jaundice. Br J Obstet Gynaecol 1984;99:1014–18.CrossRefGoogle Scholar
D'Souza, S W, Lieberman, B, Cadman, J, Richards, B. Oxytocin induction of labour: hyponatraemia and neonatal jaundice. Eur J Obstet Gynecol Reprod Biol 1986;22:309–17.CrossRefGoogle ScholarPubMed
Leylek, O A, Ergur, A, Senocak, F. Prophylaxis of the occurrence of hyperbilirubinemia in relation to maternal oxytocin infusion with steroid treatment. Gynecol Obstet Invest 1998;46:164–8.CrossRefGoogle ScholarPubMed
Odell, G B. Normal metabolism of bilirubin during neonatal life. In: Neonatal hyperbilirubinemia. New York: Grune & Stratton, 1980:35–49.Google Scholar
Boggs, T R, Bishop, H. Neonatal hyperbilirubinemia associated with high obstruction of the small bowel. J Pediatr 1965;66:349–56.CrossRefGoogle ScholarPubMed
Porto, S O. Jaundice in congenital malrotation of the intestine. Am J Dis Child 1969;117:684–8.Google ScholarPubMed
Clarkson, J E, Cowan, J O, Herbison, G P. Jaundice in full-term healthy neonates – a population study. Aust Paediatr J 1984;20:303–8.Google ScholarPubMed
Rosta, J, Makoi, Z, Kertesz, A. Delayed meconium passage and hyperbilirubinemia. Lancet 1986;2:1138.Google Scholar
Cottrell, B H, Anderson, G C. Rectal or axillary temperature measurement: effect on plasma bilirubin and intestinal transit of meconium. J Pediatr Gastroenterol Nutr 1984;3:734–9.CrossRefGoogle ScholarPubMed
Poland, R L, Odell, G B. The binding of bilirubin to agar. Proc Soc Exp Biol Med 1974;146:1114–18.CrossRefGoogle Scholar
Odell, G B, Gutcher, G R, Whitington, P F, Yang, G. Enteral administration of agar as an effective adjunct to phototherapy of neonatal hyperbilirubinemia. Pediatr Res 1983;17:810–4.CrossRefGoogle ScholarPubMed
Kemper, K, Horwitz, R I, McCarthy, P. Decreased neonatal serum bilirubin with plain agar: a meta-analysis. Pediatrics 1988;82: 631–8.Google ScholarPubMed
Ulstrom, R A, Eisenklam, E. The enterohepatic shunting of bilirubin in the newborn infant: I. use of oral activated charcoal to reduce normal serum bilirubin values. J Pediatr 1964;65:27–37.CrossRefGoogle ScholarPubMed
Arrowsmith, W A, Payne, R B, Littlewood, J M. Comparison of treatments for congenital nonobstructive nonhaemolytic hyperbilirubinemia. Arch Dis Child 1975;50:197–201.CrossRefGoogle Scholar
Gourley, G R. The pathophysiology of breast milk jaundice. In: Polin, R A, Fox, W W. Fetal and neonatal physiology. Philadelphia: WB Saunders, 1992:1173–9.Google Scholar
Gartner, L M, Auerbach, K G. Breast milk and breastfeeding jaundice. In: Barness, L A. Advances in pediatrics. Vol. 34. Chicago: Yearbook Medical Publishers, 1987:249–74.Google Scholar
Leung, A K, Sauve, R S. Breastfeeding and breast milk jaundice. J R Soc Health 1989;6:213–17.CrossRefGoogle Scholar
Saigal, S, Lunyk, O, Bennett, K J, Patterson, M C. Serum bilirubin levels in breast- and formula-fed infants in the first 5 days of life. Can Med Assoc J 1982;127:985–9.Google ScholarPubMed
Kivlahan, C, James, E J P. The natural history of neonatal jaundice. Pediatrics 1984;74:364–70.Google ScholarPubMed
Gartner, L M, Arias, I M. Studies of prolonged neonatal jaundice in the breast-fed infant. J Pediatr 1966;68:54–66.CrossRefGoogle ScholarPubMed
Grunebaum, E, Amir, J, Merlob, P. Breast milk jaundice: natural history, familial incidence and late neurodevelopmental outcome of the infant. Eur J Pediatr 1991;150:267–70.CrossRefGoogle ScholarPubMed
Behrman, R E, Kliegman, J M. Jaundice and hyperbilirubinemia in the newborn. In: Behrman, R E, Vaughan, VC 3rd, Nelson, W E. Nelson textbook of pediatrics. 12th ed. Philadelphia: WB Saunders Co., 1983:378–81.Google Scholar
Lascari, A D. “Early” breast-feeding jaundice: clinical significance. J Pediatr 1986;108:156–8.CrossRefGoogle ScholarPubMed
Orlowski, J P. Breast milk jaundice – early and late. Cleve Clin Q 1983;50:339.CrossRefGoogle Scholar
Arias, I M, Gartner, L M, Seifter, S, Furman, M. Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3(alpha), 20(beta)-diol in maternal milk that inhibits glucuronide formation in vitro. J Clin Invest 1964;43:2037–47.CrossRefGoogle Scholar
Murphy, J F, Hughs, I, Verrier Jones, E R. Pregnanediols and breast-milk jaundice. Arch Dis Child 1981;56:474–6.CrossRefGoogle ScholarPubMed
Bevan, B R, Holton, J B. Inhibition of bilirubin conjugation in rat liver slices by free fatty acids, with relevance to the problem of breast-milk jaundice. Clin Chim Acta 1972;41:101–7.CrossRefGoogle Scholar
Poland, R L, Schultz, G E, Gayatri, G. High milk lipase activity associated with breast-milk jaundice. Pediatr Res 1980;14:1328–31.CrossRefGoogle ScholarPubMed
Hernell, O. Breast-milk jaundice. J Pediatr 1982;99:311–14.CrossRefGoogle Scholar
Constantopoulos, A, Messaritakis, J, Matsanoitis, N. Breast-milk jaundice: the role of lipoprotein lipase and the free fatty acids. Eur J Pediatr 1980;134:35–8.CrossRefGoogle ScholarPubMed
Forsyth, J S, Donnet, L, Ross, P E. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: normal infants and those with breast milk jaundice. J Pediatr Gastroenterol Nutr 1990;11:205–10.CrossRefGoogle ScholarPubMed
Gaffney, P T, Buttenshaw, R L, Ward, M, Diplock, R D. Breast milk β-glucuronidase and neonatal jaundice. Lancet 1986;i:1161–2.CrossRefGoogle Scholar
Alonso, E M, Whitington, P M, Whitington, S H. Enterohepatic circulation of nonconjugated bilirubin in rats fed with human milk. J Pediatr 1991;118:425–30.CrossRefGoogle ScholarPubMed
Tazawa, Y, Abukawa, D, Watabe, M. Abnormal results of biochemical liver function tests in breast-fed infants with prolonged indirect hyperbilirubinaemia. Eur J Pediatr 1991;150: 310–13.CrossRefGoogle ScholarPubMed
Maisels, M J, Gifford, K. Normal serum bilirubin levels in the newborn and the effect of breast-feeding. Pediatrics 1986;78:837–43.Google ScholarPubMed
Crigler, J F, Najjar, V A. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics 1952;10:169–80.Google ScholarPubMed
Blaschke, T F, Berke, P D, Scharschmidt, B F. Crigler-Najjar syndrome: an unusual course with development of neurological damage at age eighteen. Pediatr Res 1974;8:573–90.CrossRefGoogle Scholar
Duhamel, G, Blanckaert, N, Metreau, J M. An unusual case of Crigler-Najjar disease in the adult. Classification into types I and II revisited. J Hepatol 1985;1:47–53.CrossRefGoogle ScholarPubMed
Blumenschein, S D, Kallen, R J, Storey, B. Familial nonhemolytic jaundice with late onset of neurologic damage. Pediatrics 1968;42:786–92.Google Scholar
Arias, I M, Gartner, L M, Cohen, M. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Am J Med 1969;47:395–409.CrossRefGoogle ScholarPubMed
Gordon, E R, Shaffer, E A, Sass-Kortsak, A. Bilirubin secretion and conjugation in the Crigler-Najjar syndrome type II. Gastroenterology 1976;70:761–5.Google Scholar
Odell, G B, Whitington, P F. Crigler-Najjar syndrome, type III: a new variant of hereditary non-hemolytic, non-conjugated hyperbilirubinemia. Hepatology 1990;12:871.Google Scholar
Thompson, G N, McCrossin, R B, Penfold, J L. Management and outcome of children with congenital hypothyroidism detected on neonatal screening in South Australia. Med J Aust 1986;145:18–22.Google ScholarPubMed
Lafranchi, S. Diagnosis and treatment of hypothyroidism in children. Compr Therapy 1987;13:20–30.Google ScholarPubMed
Odell, G B. Studies in kernicterus. I. Protein binding of bilirubin. J Clin Invest 1959;38:823.CrossRefGoogle Scholar
Stutman, H R, Parker, K M, Marks, M I. Potential of moxalactam and other new antimicrobial agents for bilirubin-albumin displacement in neonates. Pediatrics 1985;75:294–8.Google ScholarPubMed
Brodersen, R, Robertson, A. Ceftriaxone binding to human serum albumin: competition with bilirubin. Mol Pharmacol 1989;36:478–83.Google ScholarPubMed
Park, H Z, Lee, S P, Suchy, A L. Ceftriaxone-associated gallbladder sludge. Identification of calcium-ceftriaxone salt as a major component of gallbladder precipitate. Gastroenterology 1991;100:1665–70.CrossRefGoogle ScholarPubMed
Yeung, C Y, Lee, F T, Wong, H N. Effect of a popular chinese herb on neonatal bilirubin protein binding. Biol Neonate 1990;58:98–103.CrossRefGoogle ScholarPubMed
Lambert, G H, Muraskas, J, Anderson, C L, Myers, T F. Direct hyperbilirubinemia associated with chloral hydrate administration in the newborn. Pediatrics 1990;86:277–81.Google ScholarPubMed
Jahrig, D, Jahrig, K, Stiete, S. Neonatal jaundice in infants of diabetic mothers. Acta Paediatr Scand 1989;360(suppl):101–7.CrossRefGoogle Scholar
Arias, I M, Wolfson, S, Lucey, J F, McKay, RJ Jr. Transient familial neonatal hyperbilirubinemia. J Clin Invest 1965;44:1442–50.CrossRefGoogle ScholarPubMed
Kawade, N, Onishi, S. The prenatal and postnatal development of UDP-glucuronyltransferase activity towards bilirubin and the effect of premature birth on this activity in the human liver. Biochem J 1981;196:257–60.CrossRefGoogle ScholarPubMed
Obrinsky, W, Denley, M L, Brauer, R W. Sulfobromophthalein sodium excretion test as a measure of liver function in premature infants. Pediatrics 1952;9:421–38.Google ScholarPubMed
Vest, M, Rossier, R. Detoxification in the newborn: the ability of the newborn infant to form conjugates with glucuronic acid, glycine, acetate and glutathione. Ann N Y Acad Sci 1963;111: 183–98.CrossRefGoogle ScholarPubMed
Boggs, T R, Westphal, MD Jr. Mortality of exchange transfusions. Pediatrics 1960;26:745–55.Google Scholar
Odell, G B, Schutta, H S. Bilirubin encephalopathy. In: McCandless, D W. Cerebral energy metabolism and metabolic encephalopathy. New York: Plenum Publishing Corp, 1985:229–61.Google Scholar
Walker, P C. Neonatal bilirubin toxicity – a review of kernicterus and the implications of drug-induced bilirubin displacement. Clin Pharmacokinet 1987;13:26–50.CrossRefGoogle ScholarPubMed
Claireaux, A E. Pathology of human kernicterus. In: Sass-Kortsak, A. Kernicterus: a report based on a symposium held at the IX International Congress of Paediatrics. Toronto: University of Toronto Press, 1961:140.Google Scholar
Odell, G B, Storey, G N B, Rosenberg, L A. Studies in kernicterus. III. The saturation of serum proteins with bilirubin during neonatal life and its relationship to brain damage at five years. J Pediatr 1970;76:12–21.CrossRefGoogle Scholar
Johnson, L, Boggs, TR Jr. Bilirubin-dependent brain damage: incidence and indication for treatment. In: Odell, G B, Schaffer, R, Simopoulous, A P. Phototherapy in the newborn: an overview. Washington, DC: National Academy of Sciences, 1974:122–49.Google Scholar
Seidman, D S, Paz, I, Stevenson, D K. Neonatal hyperbilirubinemia and physical and cognitive performance at 17 years of age. Pediatrics 1991;88:828–33.Google ScholarPubMed
Brodersen, R, Stern, L. Deposition of bilirubin acid in the central nervous system – a hypothesis for the development of kernicterus. Acta Paediatr Scand 1990;79:12–19.CrossRefGoogle ScholarPubMed
Brito, M A, Brites, D, Butterfield, D A. A link between hyperbilirubinemia, oxidative stress and injury to neocortical synaptosomes. Brain Res 2004;1026:33–43.CrossRefGoogle ScholarPubMed
Gardner, W A, Konigsmark, B W. Familial nonhemolytic jaundice: bilirubinosis and encephalopathy. Pediatrics 1969;43:365–76.Google ScholarPubMed
Rubboli, G, Ronchi, F, Cecchi, P. A neurophysiological study in children and adolescents with Crigler-Najjar syndrome type I. Neuropediatrics 1997;28:281–6.CrossRefGoogle ScholarPubMed
Hsia, D Y Y, Allen, F H, Gellis, S S, Diamond, L K. Erythroblastosis fetalis. VIII. Studies of serum bilirubin in relation to kernicterus. N Engl J Med 1952;247:668–71.CrossRefGoogle ScholarPubMed
Newman, T B, Maisels, M J. Does hyperbilirubinemia damage the brain of healthy full-term infants?Clin Perinatol 1990;17:331–58.CrossRefGoogle ScholarPubMed
Ose, T, Tsuruhara, T, Araki, M. Follow-up study of exchange transfusion for hyperbilirubinemia in infants in Japan. Pediatrics 1967;40:196–201.Google ScholarPubMed
Odell, G B. The dissociation of bilirubin from albumin and its clinical implications. J Pediatr 1959;55:268–79.CrossRefGoogle ScholarPubMed
Wadsworth, S J, Suh, B. In vitro displacement of bilirubin by antibiotics and 2-hydroxybenzoylglycine in newborns. Antimicrob Agents Chemother 1988;32:1571–5.CrossRefGoogle ScholarPubMed
Harris, R C, Lucey, J F, MacLean, J R. Kernicterus in premature infants associated with low concentrations of bilirubin in the plasma. Pediatrics 1958;21:875–84.Google ScholarPubMed
Ahlfors, C E, Wennberg, R P. Bilirubin-albumin binding and neonatal jaundice. Semin Perinatol 2004;28:334–9.CrossRefGoogle ScholarPubMed
Ahlfors, C E, Marshall, G D, Wolcott, D K. Measurement of unbound bilirubin by the peroxidase test using zone fluidics. Clin Chim Acta 2006;365:78–85.CrossRefGoogle ScholarPubMed
Lenhardt, M L, McArtor, R, Bryant, B. Effects of neonatal hyperbilirubinemia on the brainstem electric response. J Pediatr 1984;104:281–4.CrossRefGoogle ScholarPubMed
Nakamura, H, Takada, S, Shimabuku, R. Auditory nerve and brainstem responses in newborn infants with hyperbilirubinemia. Pediatrics 1985;75:703–8.Google ScholarPubMed
Hung, K. Auditory brainstem responses in patients with neonatal hyperbilirubinemia and bilirubin encephalopathy. Brain Dev 1989;11:297–301.CrossRefGoogle ScholarPubMed
Gupta, A K, Mann, S B. Is auditory brainstem response a bilirubin neurotoxicity marker?Am J Otolaryngol 1998;19:232–6.CrossRefGoogle ScholarPubMed
Perlman, M, Fainmesser, P, Sohmer, H. Auditory nerves–brainstem evoked responses in hyperbilirubinemic neonates. Pediatrics 1983;72:658–64.Google ScholarPubMed
Nwaesei, C G, VanAerde, J, Boyden, M, Perlman, M. Changes in auditory brainstem responses in hyperbilirubinemic infants before and after exchange transfusion. Pediatrics 1984;74:800–3.Google ScholarPubMed
Wennberg, R P, Ahlfors, C E, Bickers, R. Abnormal auditory brainstem response in a newborn infant with hyperbilirubinemia: improvement with exchange transfusion. J Pediatr 1982;100:624–6.CrossRefGoogle Scholar
Deliac, P, Demarquez, J L, Barberot, J P. Brainstem auditory evoked potentials in icteric fullterm newborns: alterations after exchange transfusion. Neuropediatrics 1990;21:115–18.CrossRefGoogle ScholarPubMed
Vohr, B R, Karp, D, O'Dea, C. Behavioral changes correlated with brain-stem auditory evoked responses in term infants with moderate hyperbilirubinemia. J Pediatr 1990;117:288–91.CrossRefGoogle ScholarPubMed
Vohr, B R, Lester, B, Rapisardi, G. Abnormal brain-stem function (brain-stem auditory evoked response) correlates with acoustic cry features in term infants with hyperbilirubinemia. J Pediatr 1989;115:303–8.CrossRefGoogle ScholarPubMed
Shapiro, S M. Binaural effects in brainstem auditory evoked potentials of jaundiced Gunn rats. Hear Res 1991;53:41–8.CrossRefGoogle ScholarPubMed
Bongers-Schokking, J J, Colon, E J, Hoogland, R A. Somatosensory evoked potentials in neonatal jaundice. Acta Paediatr Scand 1990;79:148–55.CrossRefGoogle ScholarPubMed
Kemper, K, Forsyth, B, McCarthy, P. Jaundice, terminating breast-feeding, and the vulnerable child. Pediatrics 1989;84:773–8.Google ScholarPubMed
Kemper, K J, Forsyth, B W, McCarthy, P L. Persistent perceptions of vulnerability following neonatal jaundice. Am J Dis Child 1990;144:238–41.Google ScholarPubMed
Schedle, A, Fricker, H S. Impact of hyperbilirubinaemia and transient mother-child separation in the neonatal period on mother-child attachment in the 1st year of life. Eur J Pediatr 1990;149:587–91.CrossRefGoogle ScholarPubMed
Britton, J R, Britton, H L, Beebe, S A. Early discharge of the term newborn: a continued dilemma. Pediatrics 1994;94:291–5.Google ScholarPubMed
Soskolne, E L, Schumacher, R, Fyock, C. The effect of early discharge and other factors on readmission rates of newborns. Arch Pediatr Adolesc Med 1996;150:373–9.CrossRefGoogle ScholarPubMed
Ahlfors, C E. Effect of ibuprofen on bilirubin-albumin binding. J Pediatr 2004;144:386–8.CrossRefGoogle ScholarPubMed
Cockington, R A, Drew, J H, Eberhard, A. Outcomes following the use of rational guidelines in the management of jaundiced newborn infants. Aust Paediatr J 1989;25:346–50.Google ScholarPubMed
Ennever, J F. Blue light, green light, white light, more light: treatment of neonatal jaundice. Clin Perinatol 1990;17:467–81.CrossRefGoogle ScholarPubMed
Pratesi, R, Agati, G, Fusi, F. Phototherapy for neonatal hyperbilirubinemia. Photodermatol 1989;6:244–57.Google ScholarPubMed
McDonagh, A F, Lightner, D A. “Like a shrivelled blood orange' – bilirubin, jaundice and phototherapy. Pediatrics 1985;75:443–5.Google Scholar
McDonagh, A F, Palma, L A, Lightner, D A. Phototherapy for neonatal jaundice: stereospecific and regioselective photoisomerization of bilirubin bound to human serum albumin and NMR characterization of intramolecular cyclized photoproducts. J Am Chem Soc 1982;104:6867–9.CrossRefGoogle Scholar
Itoh, S, Onishi, S, Manabe, M, Yamakawa, T. Wavelength dependence of the geometric and structural photoisomerization of bilirubin bound to human serum albumin. Biol Neonate 1987;51:10–17.CrossRefGoogle ScholarPubMed
Ennever, J F, Dresing, T J. Quantum yields for the cyclization and configurational isomerization of 4e,15Z-bilirubin. Photochem Photobiol 1991;53:25–32.CrossRefGoogle ScholarPubMed
Onishi, S, Isobe, K, Itoh, S. Metabolism of bilirubin and its photoisomers in newborn infants during phototherapy. J Biochem (Toyko) 1986;100:789–95.CrossRefGoogle ScholarPubMed
Ennever, J F, Costarino, A T, Polin, R A. Rapid clearance of a structural isomer of bilirubin during phototherapy. J Clin Invest 1987;79:1674–8.CrossRefGoogle ScholarPubMed
Tan, K L. Efficacy of fluorescent daylight, blue, and green lamps in the management of nonhemolytic hyperbilirubinemia. J Pediatr 1989;114:132–7.CrossRefGoogle ScholarPubMed
Rosenfeld, W, Twist, P, Concepcion, L. A new device for phototherapy. Pediatr Res 1989;25:227A.Google Scholar
Rosenfeld, W, Twist, P, Concepcion, L. A new device for phototherapy treatment of jaundiced infants. J Perinatol 1990;10: 243–8.Google ScholarPubMed
Gale, R, Dranitzki, Z, Dollberg, S, Stevenson, D K. A randomized, controlled application of the Wallaby phototherapy system compared with standard phototherapy. J Perinatol 1990;10:239–42.Google ScholarPubMed
Kaam, A H, Beek, R H, Vergunst-van Keulen, J G. Fibre optic versus conventional phototherapy for hyperbilirubinaemia in preterm infants. Eur J Pediatr 1998;157:132–7.CrossRefGoogle ScholarPubMed
Fetus and Newborn Committee and Canadian Paediatric Society. Use of phototherapy for neonatal hyperbilirubinemia. Can Med Assoc J 1986;134:1237–45.
Cashore, W J, Stern, L. The management of hyperbilirubinemia. Clin Perinatol 1984;11:339–57.CrossRefGoogle ScholarPubMed
Polin, R A. Management of neonatal hyperbilirubinemia: rational use of phototherapy. Biol Neonate 1990;58(suppl 1):32–43.CrossRefGoogle Scholar
Grabert, B E, Wardwell, C, Harburg, S K. Home phototherapy. An alternative to prolonged hospitalization of the full-term, well newborn. Clin Pediatr 1986;25:291–4.CrossRefGoogle ScholarPubMed
Ludwig, M A. Phototherapy in the home setting. J Pediatr Health Care 1990;4:304–8.CrossRefGoogle ScholarPubMed
Greenwald, J L. Hyperbilirubinemia in otherwise healthy infants. Am Fam Physician 1988;38:151–8.Google ScholarPubMed
Gourley, G R, Odell, G B. Bilirubin metabolism in the fetus and neonate. In: Lebenthal, E. Human gastrointestinal development. New York: Raven Press, 1989:581–621.Google Scholar
Curtis, M, Guandalini, S, Fasano, A. Diarrhea in jaundiced neonates treated with phototherapy: a role of intestinal secretion. Arch Dis Child 1989;64:1161–4.CrossRefGoogle ScholarPubMed
Drew, J H, Marriage, K J, Bayle, V. Phototherapy. Short and long-term complications. Arch Dis Child 1976;51:454–8.CrossRefGoogle ScholarPubMed
Scheidt, P C, Bryla, D A, Nelson, K B. Phototherapy for neonatal hyperbilirubinemia: six-year follow-up of the National Institute of Child Health and Human Development Clinical Trial. Pediatrics 1990;85:455–63.Google ScholarPubMed
Benders, M J, Bel, F, Bor, M. The effect of phototherapy on cerebral blood flow velocity in preterm infants. Acta Paediatr 1998;87:786–91.CrossRefGoogle ScholarPubMed
Benders, M J, Bel, F, Bor, M. Haemodynamic consequences of phototherapy in term infants. Eur J Pediatr 1999;158: 323–8.CrossRefGoogle ScholarPubMed
Yeo, K L, Perlman, M, Hao, Y, Mullaney, P. Outcomes of extremely premature infants related to their peak serum bilirubin concentrations and exposure to phototherapy. Pediatrics 1998;102:1426–31.CrossRefGoogle ScholarPubMed
Gies, H P, Roy, C R. Bilirubin phototherapy and potential UVR hazards. Health Phys 1990;58:313–20.CrossRefGoogle ScholarPubMed
Poland, R L, Ostrea, E M. Care of the high risk neonate. In: Klaus, M H, Fanaroff, A A. Neonatal hyperbilirubinemia. 3rd ed. Philadelphia: Ardmore Medical Bools, an imprint of WB Saunders Company, 1986:238–61.Google ScholarPubMed
Yamauchi, Y, Kasa, N, Yamanouchi, I. Is it necessary to change the babies' position during phototherapy. Early Hum Dev 1989; 20:221–7.CrossRefGoogle ScholarPubMed
Yetman, R J, Parks, D K, Huseby, V. Rebound bilirubin levels in infants receiving phototherapy. J Pediatr 1998;133:705–7.CrossRefGoogle ScholarPubMed
Tan, K L. Decreased response to phototherapy for neonatal jaundice in breast-fed infants. Arch Pediatr Adolesc Med 1998;152: 1187–90.CrossRefGoogle ScholarPubMed
Odell, G B. Treatment of neonatal hyperbilirubinemia. In: Neonatal hyperbilirubinemia. New York: Grune and Stratton, 1980:117.Google Scholar
Gartner, L M, Lee, K-S. Jaundice and liver disease. Part I. Unconjugated hyperbilirubinemia. In: Fanaroff, A A, Martin, R J. Behrman's neonatal-perinatal medicine. 3rd ed. St. Louis: CV Mosby, 1983:754–70.Google Scholar
Alpay, F, Sarici, S U, Okutan, V. High-dose intravenous immunoglobulin therapy in neonatal immune haemolytic jaundice. Acta Paediatr 1999;88:216–19.CrossRefGoogle ScholarPubMed
Shapiro, M. Safer exchange transfusions with ACD blood. Bibl Haematol 1965;23:883–6.Google ScholarPubMed
Weldon, V V, Odell, G B. Mortality risk of exchange transfusion. Pediatrics 1968;41:797–801.Google ScholarPubMed
Valaes, T N, Harvey-Wilkes, K. Pharmacologic approaches to the prevention and treatment of neonatal hyperbilirubinemia. Clin Perinatol 1990;17:245–73.CrossRefGoogle ScholarPubMed
Veere, C N, Jansen, P L, Sinaasappel, M. Oral calcium phosphate: a new therapy for Crigler-Najjar disease?Gastroenterology 1997;112:455–62.CrossRefGoogle ScholarPubMed
Veere, C N, Schoemaker, B, Meer, R. Rapid association of unconjugated bilirubin with amorphous calcium phosphate. J Lipid Res 1995;36:1697–707.Google ScholarPubMed
Veere, C N, Schoemaker, B, Bakker, C. Influence of dietary calcium phosphate on the disposition of bilirubin in rats with unconjugated hyperbilirubinemia. Hepatology 1996;24:620–6.CrossRefGoogle Scholar
Carvalho, M, Klaus, M H, Merkatz, R B. Frequency of breast-feeding and serum bilirubin concentration. Am J Dis Child 1982;136:737–8.Google ScholarPubMed
Wu, T-W, Li, G S. A new bilirubin-degrading enzyme from orange peels. Biochem Cell Biol 1988;66:1248.CrossRefGoogle ScholarPubMed
Johnson, L, Dworanczyk, R, Jenkins, D. Bilirubin oxidase (BOX) feedings at varying time intervals and enzyme concentrations in infant Gunn rats. Pediatr Res 1989;25:116A.Google Scholar
Kimura, M, Matsumura, Y, Miyauchi, Y, Maeda, H. A new tactic for the treatment of jaundice: an injectable polymer-conjugated bilirubin oxidase. Proc Soc Exp Biol Med 1988;188:364–9.CrossRefGoogle ScholarPubMed
Kimura, M, Matsumura, Y, Konno, T. Enzymatic removal of bilirubin toxicity by bilirubin oxidase in vitro and excretion of degradation products in vivo. Proc Soc Exp Biol Med 1990;195:64–9.CrossRefGoogle ScholarPubMed
Gartner, L M, Lee, K S, Vaisman, L. Development of bilirubin transport and metabolism in the newborn rhesus monkey. J Pediatr 1977;90:513–31.CrossRefGoogle ScholarPubMed
Waltman, R, Nigrin, G, Bonura, F. Ethanol in prevention of hyperbilirubinaemia in the newborn. Lancet 1969;ii:1265–7.CrossRefGoogle Scholar
Rayburn, W, Donn, S, Piehl, E, Compton, A. Antenatal phenobarbital and bilirubin metabolism in the very low birth weight infant. Am J Obstet Gynecol 1988;159:1491–3.CrossRefGoogle ScholarPubMed
Stern, L, Khanna, N N, Levy, G. Effect of phenobarbital on hyperbilirubinemia and glucuronide formation in newborns. Am J Dis Child 1970;120:26–31.Google ScholarPubMed
Gabilan, J C, Benattar, C, Lindenbaum, A. Clofibrate treatment of neonatal jaundice. Pediatrics 1990;86:647–8.Google ScholarPubMed
Neifert, M R. The optimization of breast-feeding in the perinatal period. Clin Perinatol 1998;25:303–26.CrossRefGoogle ScholarPubMed
Gartner, L M. Breast milk jaundice. In: Levine, R L, Maisels, M J. Hyperbilirubinemia in the newborn. Report of the 85th Ross Conference on Pediatric Research. Columbus: Ross Laboratories, 1983:75–86.Google Scholar
Yamauchi, Y, Yamanouchi, I. Breast-feeding frequency during the first 24 hours after birth in full-term neonates. Pediatrics 1990;86:171–5.Google ScholarPubMed
Osborn, L M, Bolus, R. Breast feeding and jaundice in the first week of life. J Fam Pract 1985;20:475.Google ScholarPubMed
Gourley, G R, Kreamer, B, Arend, R. The effect of diet on feces and jaundice during the first 3 weeks of life. Gastroenterology 1992;103:660–7.CrossRefGoogle ScholarPubMed
Gourley, G R, Kreamer, B, Cohnen, M, Kosorok, M R. Neonatal jaundice and diet. Arch Pediatr Adolesc Med 1999;153:184–8.CrossRefGoogle ScholarPubMed
Amato, M, Howald, H, Muralt, G. Interruption of breast-feeding versus phototherapy as treatment of hyperbilirubinemia in full-term infants. Helv Paediatr Acta 1985;40:127–31.Google ScholarPubMed
Stevenson, D K, Rodgers, P A, Vreman, H J. The use of metalloporphyrins for the chemoprevention of neonatal jaundice. Am J Dis Child 1989;143:353–6.Google ScholarPubMed
Rodgers, P A, Stevenson, D K. Developmental biology of heme oxygenase. Clin Perinatol 1990;17:275–91.CrossRefGoogle ScholarPubMed
Kappas, A, Drummond, G S, Manola, T. Sn-protoporphyrin use in the management of hyperbilirubinemia in term newborns with direct Coombs-positive ABO-incompatibility. Pediatrics 1988;81:485–97.Google ScholarPubMed
Martinez, J C, Garcia, H O, Otheguy, L E. Control of severe hyperbilirubinemia in full-term newborns with the inhibitor of bilirubin production Sn-mesoporphyrin. Pediatrics 1999;103:1–5.CrossRefGoogle ScholarPubMed
Valaes, T, Drummond, G S, Kappas, A. Control of hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns using an inhibitor of bilirubin production, Sn-mesoporphyrin. Pediatrics 1998;101:E1.CrossRefGoogle ScholarPubMed
Vreman, H J, Stevenson, D K. Metalloporphyrin-enhanced photodegradation of bilirubin in vitro. Am J Dis Child 1990;144: 590–4.Google ScholarPubMed
Cooke, R W. New approach to prevention of kernicterus. Lancet 1999;353:1814–15.CrossRefGoogle ScholarPubMed
Mor, L, Thaler, I, Brandes, J M, Sideman, S. In vivo hemoperfusion studies of bilirubin removal from jaundiced dogs. Int J Artif Organs 1981;4:192–8.Google Scholar
Mullon, C J, Tosone, C M, Langer, R. Simulation of bilirubin detoxification in the newborn using an extracorporeal bilirubin oxidase reactor. Pediatr Res 1989;26:452–7.CrossRefGoogle ScholarPubMed
Brian, B F, Dorson, W J, Pizziconi, V B. Augmented hemoperfusion for hyperbilirubinemia. Trans Am Soc Artif Intern Organs 1988;34:585–9.Google ScholarPubMed
Denizli, A, Kocakulak, M, Piskin, E. Bilirubin removal from human plasma in a packed-bed column system with dye-affinity microbeads. J Chromatogr 1998;707:25–31.CrossRefGoogle Scholar
Miles, D R, Dorson, W J, Brandon, T A. An efficient method for removing bilirubin. ASAIO Trans 1990;36:M611–15.Google ScholarPubMed
Bosma, P J. Inherited disorders of bilirubin metabolism. J Hepatol 2003;38:107–17.CrossRefGoogle ScholarPubMed
Gilbert, A, Lereboullet, P. La cholemie simple familiale. Sem Medicale 1901;21:241–3.Google Scholar
Odell, G B, Gourley, G R. Hereditary hyperbilirubinemia. In: Lebenthal, E. The textbook of gastroenterology and nutrition in infancy. 2nd ed. New York: Raven Press, 1989:949–67.Google Scholar
Watson, K J, Gollan, J L. Gilbert's syndrome. Baillieres Clin Gastroenterol 1989;3:337–55.CrossRefGoogle ScholarPubMed
Berk, P D, Noyer, C. The familial unconjugated hyperbilirubinemias. Semin Liver Dis 1994;14:356–85.Google Scholar
Ashraf, W, Someren, N, Quigley, E M. Gilbert's syndrome and Ramadan: exacerbation of unconjugated hyperbilirubinemia by religious fasting. J Clin Gastroenterol 1994;19:122–4.CrossRefGoogle ScholarPubMed
Naiman, J L, Sugasawara, E J, Benkosky, S L, Mailhot, E A. Icteric plasma suggests Gilbert's syndrome in the blood donor. Transfusion 1996;36:974–8.CrossRefGoogle ScholarPubMed
Lachaux, A, Aboufadel, A, Chambon, M. Gilbert's syndrome: a possible cause of hyperbilirubinemia after orthotopic liver transplantation. Transpl Proc 1996;28:2846.Google ScholarPubMed
Jansen, P L, Bosma, P J, Bakker, C. Persistent unconjugated hyperbilirubinemia after liver transplantation due to an abnormal bilirubin UDP-glucuronosyltransferase gene promoter sequence in the donor. J Hepatol 1997;27:1–5.CrossRefGoogle Scholar
Gates, L K, Wiesner, R H, Krom, R A. Etiology and incidence of unconjugated hyperbilirubinemia after orthotopic liver transplantation. Am J Gastroenterol 1994;89:1541–3.Google ScholarPubMed
Arnold, J C, Otto, G, Kraus, T. Gilbert's syndrome – a possible cause of hyperbilirubinemia after orthotopic liver transplantations. J Hepatol 1992;14:404.CrossRefGoogle Scholar
Wilding, P, Rollason, J G, Robinson, D. Patterns of change for various biochemical constituents detected in well population screening. Clin Chim Acta 1972;41:375–87.CrossRefGoogle ScholarPubMed
Sieg, A, Schlierf, G, Stiehl, A, Kommerell, B. Die prävalenz des Gilbert-syndromes in Deutschland. Dtsch Med Wochenschr 1987;112:1206–8.CrossRefGoogle Scholar
Olsson, R, Bliding, Å, Jagenburg, R. Gilbert's syndrome – does it exist?Acta Med Scand 1988;244:485–90.Google Scholar
Cleary, K J, White, P D. Gilbert's and chronic fatigue syndromes in men. Lancet 1993;341:842.CrossRefGoogle ScholarPubMed
Valesini, G, Conti, F, Priori, R, Balsano, F. Gilbert's syndrome and chronic fatigue syndrome. Lancet 1993;341:1162–3.CrossRefGoogle ScholarPubMed
Owens, D, Evans, J. Population studies on Gilbert's syndrome. J Med Genet 1975;12:152–6.CrossRefGoogle ScholarPubMed
Bailey, A, Robinson, D, Dawson, A M. Does Gilbert's disease exist?Lancet 1977;1:931–3.CrossRefGoogle ScholarPubMed
Berk, P D, Howe, R B, Bloomer, J R, Berlin, N I. Studies of bilirubin kinetics in normal adults. J Clin Invest 1969;48:2176–90.CrossRefGoogle ScholarPubMed
Alwall, N, Laurell, C B, Nilsby, I. Studies on hereditary in cases of “nonhemolytic bilirubinemia without direct Van Den Bergh reaction” (hereditary, nonhemolytic bilirubinemia). Acta Med Scand 1946;124:114–25.CrossRefGoogle Scholar
Foulk, W T, Butt, H R, Owen, C A. Constitutional hepatic dysfunction (Gilbert's disease): its natural history and related syndromes. Medicine 1959;38:25–46.CrossRefGoogle ScholarPubMed
Powell, L W, Hemingway, E, Billing, B H, Sherlock, S. Idiopathic unconjugated hyperbilirubinemia (Gilbert's syndrome). A study of 42 families. N Engl J Med 1967;277:1108–12.CrossRefGoogle ScholarPubMed
Aono, S, Adachi, Y, Uyama, E. Analysis of genes for bilirubin UDP-glucuronosyltransferase in Gilbert's syndrome. Lancet 1995;345:958–9.CrossRefGoogle ScholarPubMed
Bosma, P, Chowdhury, J R, Jansen, P H. Genetic inheritance of Gilbert's syndrome. Lancet 1995;346:314–15.CrossRefGoogle ScholarPubMed
Soffer, L J. Bilirubin excretion as a test for liver function during normal pregnancy. Bull Johns Hopkins Hosp 1933;52:365–75.Google Scholar
Muraca, M, Fevery, J. Influence of sex and sex steroids on bilirubin uridine diphosphate-glucuronsyltransferase activity of rat liver. Gastroenterology 1984;87:308–13.Google ScholarPubMed
Odell, G B. The estrogenation of the newborn. In: Neonatal hyperbilirubinemia. New York: Grune & Stratton, 1980:39–41.Google Scholar
Bancroft, J D, Kreamer, B, Gourley, G R. Gilbert syndrome accelerates development of neonatal jaundice. J Pediatr 1998;132:656–60.CrossRefGoogle ScholarPubMed
Monaghan, G, McLellan, A, McGeehan, A. Gilbert's syndrome is a contributory factor in prolonged unconjugated hyperbilirubinemia of the newborn. J Pediatr 1999;134:441–6.CrossRefGoogle ScholarPubMed
Akaba, K, Kimura, T, Sasaki, A. Neonatal hyperbilirubinemia and a common mutation of the bilirubin uridine diphosphate-glucuronosyltransferase gene in Japanese. J Hum Genet 1999;44:22–5.CrossRefGoogle Scholar
Trioche, P, Chalas, J, Francoual, J. Jaundice with hypertrophic pyloric stenosis as an early manifestation of Gilbert syndrome. Arch Dis Child 1999;81:301–3.CrossRefGoogle ScholarPubMed
Hua, L, Shi, D, Bishop, P R. The role of UGT1A1*28 mutation in jaundiced infants with hypertrophic pyloric stenosis. Pediatr Res 2005;58:881–4.CrossRefGoogle ScholarPubMed
Sampietro, M, Lupica, L, Perrero, L. The expression of uridine diphosphate glucuronosyltransferase gene is a major determinant of bilirubin level in heterozygous beta-thalassaemia and in glucose-6-phosphate dehydrogenase deficiency. Br J Haematol 1997;99:437–9.CrossRefGoogle ScholarPubMed
Kaplan, M, Renbaum, P, Levy-Lahad, E. Gilbert syndrome and glucose-6-phosphate dehydrogenase deficiency: a dose-dependent genetic interaction crucial to neonatal hyperbilirubinemia. Proc Natl Acad Sci U S A 1997;94:12128–32.CrossRefGoogle ScholarPubMed
Galanello, R, Cipollina, M D, Dessi, C. Co-inherited Gilbert's syndrome: a factor determining hyperbilirubinemia in homozygous beta-thalassemia. Haematologica 1999;84:103–5.Google ScholarPubMed
Galanello, R, Perseu, L, Melis, M A. Hyperbilirubinaemia in heterozygous beta-thalassaemia is related to co-inherited Gilbert's syndrome. Br J Haematol 1997;99:433–6.CrossRefGoogle ScholarPubMed
Tzetis, M, Kanavakis, E, Tsezou, A. Gilbert syndrome associated with beta-thalassemia. Pediatr Hematol Oncol 2001;18: 477–84.CrossRefGoogle ScholarPubMed
Sharma, S, Vukelja, S J, Kadakia, S. Gilbert's syndrome co-existing with and masking hereditary spherocytosis. Ann Hematol 1997; 74:287–9.CrossRefGoogle ScholarPubMed
Black, M, Billing, B H. Hepatic bilirubin UDP-glucuronyl transferase activity in liver disease. N Engl J Med 1969;280:1266–71.CrossRefGoogle ScholarPubMed
Felsher, B F, Craig, J R, Carpio, N. Hepatic bilirubin glucuronidation in Gilbert's syndrome. J Lab Clin Med 1973;81:829–37.Google ScholarPubMed
Auclair, C, Hakim, J, Boivin, H. Bilirubin and paranitrophenol glucuronyl transferase activities of the liver in patients with Gilbert's syndrome. An attempt at a biochemical breakdown of the Gilbert's syndrome. Enzyme 1976;21:97–107.CrossRefGoogle Scholar
Adachi, Y, Yamashita, M, Nanno, T, Yamamoto, T. Proportion of conjugated bilirubin in bile in relation to hepatic bilirubin UDP-glucuronyltransferase activity. Clin Biochem 1990;23:131–4.CrossRefGoogle ScholarPubMed
Martin, J F, Vierling, J M, Wolkoff, A W. Abnormal hepatic transport of indocyanine green in Gilbert's syndrome. Gastroenterology 1976;70:385–91.Google ScholarPubMed
Ohkubo, H, Okuda, K, Jida, S. A constitutional unconjugated hyperbilirubinemia combined with indocyanine green intolerance: a new functional disorder. Hepatology 1981;1:319–24.CrossRefGoogle ScholarPubMed
Berk, P D, Blaschke, T F, Waggoner, J G. Defective bromosulfophthalein clearance in patients with constitutional hepatic dysfunction (Gilbert's syndrome). Gastroenterology 1972;63:472–81.Google Scholar
Billing, B H, Williams, R, Richards, T G. Defects in hepatic transport of bilirubin in congenital hyperbilirubinemia: an analysis of plasma bilirubin disappearance curves. Clin Sci 1964;27:245–57.Google ScholarPubMed
Berk, P D, Bloomer, J R, Hower, R B, Berlin, N I. Constitutional hepatic dysfunction (Gilbert's syndrome): a new definition based on kinetic studies with unconjugated radiobilirubin. Am J Med 1970;49:296–305.CrossRefGoogle ScholarPubMed
Okoliesanyi, L, Ghidini, O, Orlando, R. An evaluation of bilirubin kinetics with respect to the diagnosis of Gilbert's snydrome. Clin Sci Mol Med 1978;54:539–47.Google Scholar
Debinski, H S, Lee, C S, Dhillon, A P. UDP-glucuronosyltransferase in Gilbert's syndrome. Pathology 1996;28:238–41.CrossRefGoogle ScholarPubMed
Jansen, P L, Bosma, P J, Chowdhury, J R. Molecular biology of bilirubin metabolism. Prog Liver Dis 1995;13:125–50.Google ScholarPubMed
Bosma, P J, Chowdhury, J R, Bakker, C. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 1995;333:1171–5.CrossRefGoogle ScholarPubMed
Sampietro, M, Lupica, L, Perrero, L. TATA-box mutant in the promoter of the uridine diphosphate glucuronosyltransferase gene in Italian patients with Gilbert's syndrome. Ital J Gastroenterol Hepatol 1998;30:194–8.Google ScholarPubMed
Monaghan, G, Ryan, M, Seddon, R. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet 1996;347:578–81.CrossRefGoogle ScholarPubMed
Ando, Y, Chida, M, Nakayama, K. The UGT1A1*28 allele is relatively rare in a Japanese population. Pharmacogenetics 1998;8:357–60.CrossRefGoogle Scholar
Koiwai, O, Nishizawa, M, Hasada, K. Gilbert's syndrome is caused by a heterozygous missense mutation in the gene for bilirubin UDP-glucuronosyltransferase. Hum Mol Genet 1995;4:1183–6.CrossRefGoogle ScholarPubMed
Maruo, Y, Sato, H, Yamano, T. Gilbert syndrome caused by a homozygous missense mutation (tyr486asp) of bilirubin UDP-glucuronosyltransferase gene. J Pediatr 1998;132:1045–7.CrossRefGoogle ScholarPubMed
Beutler, E, Gelbart, T, Demina, A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism?Proc Natl Acad Sci U S A 1998;95:8170–4.CrossRefGoogle ScholarPubMed
Metreau, J M, Yvart, J, Dhumeaux, D, Berthelot, P. Role of bilirubin overproduction in revealing Gilbert's syndrome: is dyserythropoiesis an important factor?Gut 1978;19:838–43.CrossRefGoogle ScholarPubMed
Maddrey, W C, Cukier, J O, Maglalang, A C. Hepatic bilirubin UDP-glucuronyltransferase in patients with sickle cell anemia. Gastroenterology 1978;74:193–5.Google ScholarPubMed
Gourley, G R, Siegel, F L, Odell, G B. A rapid method for collection and analysis of bile pigments in humans. Gastroenterology 1984;86:1322A.Google Scholar
Onishi, S, Itoh, S, Kawade, N. An accurate and sensitive analysis by high-pressure liquid chromatography of conjugated and unconjugated bilirubin IX-α in various biological fluids. Biochem J 1980;185:281–4.CrossRefGoogle ScholarPubMed
Blaschke, T F, Berk, P D, Rodkey, F L. Drugs and the liver. I. Effects of glutethimide and phenobarbital on hepatic bilirubin clearance, plasma bilirubin turnover and carbon monoxide production in man. Biochem Pharmacol 1974;23:2795–806.CrossRefGoogle ScholarPubMed
Black, M, Fevery, J, Parker, D. Effect of phenobarbitone on plasma [14C] bilirubin clearance in patients with unconjugated hyperbilirubinemia. Clin Sci Mol Med 1974;46:1–17.Google Scholar
Kutz, K, Kandler, H, Gugler, R, Fevery, J. Effect of clofibrate on metabolism of bilirubin, bromosulphophthalein and indocyanine green and on the biliary lipid composition in Gilbert's syndrome. Clin Sci 1984;66:389–97.CrossRefGoogle ScholarPubMed
Foliot, A, Drocourt, J L, Etienne, J P. Increase in the hepatic glucuronidation of bilirubin in clofibrate-treated rats. Biochem Pharmacol 1977;26:547–9.CrossRefGoogle ScholarPubMed
Felsher, B F, Richard, D, Redeker, A G. The reciprocoal relation between caloric intake and the degree of hyperbilirubinemia in Gilbert's syndrome. N Engl J Med 1970;283:170–2.CrossRefGoogle ScholarPubMed
Bloomer, J R, Barrett, P V, Rodkey, F L, Berlin, N I. Studies of the mechanisms of fasting hyperbilirubinemia. Gastroenterology 1971;61:479–87.Google Scholar
Whitmer, D I, Gollan, J L. Mechanisms and significance of fasting and dietary hyperbilirubinemia. Semin Liver Dis 1983;3:42–51.CrossRefGoogle ScholarPubMed
Owens, D, Sherlock, S. Diagnosis of Gilbert's syndrome: role of reduced caloric intake test. Br Med J 1973;3:559–63.CrossRefGoogle ScholarPubMed
Bakken, A F, Thaler, M M, Schmid, R. Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J Clin Invest 1972;51:530–6.CrossRefGoogle ScholarPubMed
Kirshenbaum, G, Shames, D M, Schmid, R. An expanded model of bilirubin kinetics; effect of feeding, fasting and phenobarbital in Gilbert's syndrome. J Pharmacokinet Biopharm 1976;4:115–55.CrossRefGoogle ScholarPubMed
Gartner, U, Goeser, T, Wolkoff, A W. Effect of fasting on the uptake of bilirubin and sulfobromophthalein by the isolated perfused liver. Gastroenterology 1997;113:1707–13.CrossRefGoogle Scholar
Ricci, G L, Ricci, R R. Effect of an intraluminal food-bulk on low calorie induced hyperbilirubinemia. Clin Sci 1984;66:493–6.CrossRefGoogle Scholar
Fromke, V L, Miller, D. Constitutional hepatic dysfunction (CHD; Gilbert's syndrome): a review with special reference to a characteristic increase and prolongation of the hyperbilirubinemic response to nicotinic acid. Medicine 1972;51:451–64.CrossRefGoogle Scholar
Rollinghoff, W, Paumgartner, G, Preisig, R. Nicotinic acid test in the diagnosis of Gilbert's syndrome: correlation with the bilirubin clearance. Gut 1981;22:663–8.CrossRefGoogle Scholar
Gentile, S, Orzes, N, Persico, M. Comparison of nicotinic acid and caloric restriction induced hyperbilirubinemia in the diagnosis of Gilbert's syndrome. J Hepatol 1985;1:537–45.CrossRefGoogle Scholar
Gentile, S, Rubba, P, Persico, M. Improvement of the nicotinic acid test in the diagnosis of Gilbert's syndrome by pretreatment with indomethacin. Hepatogastroenterology 1985;33:267–9.Google Scholar
Gentile, S, Marmo, R, Persico, M. Dissociation between vascular and metabolic effects of nicotinic acid in Gilbert's syndrome. Clin Physiol 1990;10:171–8.CrossRefGoogle ScholarPubMed
Davidson, A R, Rojas Bueno, A, Thompson, R P H, Williams, R. Reduced caloric intake test and nicotinic acid provocation test in the diagnosis of Gilbert's syndrome. Br Med J 1975;2:480.CrossRefGoogle Scholar
Ohkubo, H, Musha, H, Okuda, K. Studies on nicotinic acid interaction with bilirubin metabolism. Dig Dis Sci 1979;24:700–4.CrossRefGoogle ScholarPubMed
Gentile, S, Tiribelli, C, Persico, M. Dose dependence of nicotinic acid-induced hyperbilirubinemia and its dissociation from hemolysis in Gilbert's syndrome. J Lab Clin Med 1986;107:166–71.Google ScholarPubMed
Dickey, W, McAleer, J J, Callender, M E. The nicotinic acid provocation test and unconjugated hyperbilirubinaemia. Ulster Med J 1991;60:49–52.Google ScholarPubMed
Ullrich, D, Sieg, A, Blume, R. Normal pathways for glucuronidation, sulphation and oxidation of paracetamol in Gilbert's syndrome. Eur J Clin Invest 1987;17:237–40.CrossRefGoogle ScholarPubMed
Adachi, Y, Katoh, H, Fuchi, I, Yamamoto, T. Serum bilirubin fractions in healthy subjects and patients with unconjugated hyperbilirubinemia. Clin Biochem 1990;23:247–51.CrossRefGoogle ScholarPubMed
Rudenski, A S, Halsall, D J. Genetic testing for Gilbert's syndrome: how useful is it in determining the cause of jaundice?Clin Chem 1998;44(8 pt 1):1604–9.Google Scholar
Berk, P B, Isola, L M. Specific defects in hepatic storage and clearance of bilirubin. In: Ostrow, J D. Bile pigments and jaundice: molecular, metabolic and medical aspects. New York: Marcel Dekker, 1986:279–316.Google Scholar
Evans, D A. Survey of the human acetylator polymorphism in spontaneous disorders. J Med Genet 1984;21:243–53.CrossRefGoogle ScholarPubMed
Siegmund, W, Fengler, J D, Franke, G, et, l. N-acetylation and debrisoquine hydroxylation polymorphisms in patients with Gilbert's syndrome. Br J Clin Pharmacol 1991;32:467–72.CrossRefGoogle ScholarPubMed
Herman, R J, Chaudhary, A, Szakacs, C B. Disposition of lorazepam in Gilbert's syndrome: effects of fasting, feeding, and enterohepatic circulation. J Clin Pharmacol 1994;34:978–84.CrossRefGoogle ScholarPubMed
Morais, S M, Uetrecht, J P, Wells, P G. Decreased glucuronidation and increased bioactivation of acetaminophen in Gilbert's syndrome. Gastroenterology 1992;102:577–86.CrossRefGoogle ScholarPubMed
Esteban, A, Perez-Mateo, M. Gilbert's disease: a risk factor for paracetamol overdosage?J Hepatol 1993;18:257–8.CrossRefGoogle ScholarPubMed
Wasserman, E, Myara, A, Lokiec, F. Severe CPT-11 toxicity in patients with Gilbert's syndrome: two case reports. Ann Oncol 1997;8:1049–51.CrossRefGoogle ScholarPubMed
Ewesuedo, R B, Iyer, L, Das, S. Phase I clinical and pharmacogenetic study of weekly TAS-103 in patients with advanced cancer. J Clin Oncol 2001;19:2084–90.CrossRefGoogle ScholarPubMed
Zucker, S D, Qin, X, Rouster, S D. Mechanism of indinavir-induced hyperbilirubinemia. Proc Natl Acad Sci U S A 2001;98:12671–6.CrossRefGoogle ScholarPubMed
Black, M, Sherlock, S. Treatment of Gilbert's syndrome with phenobarbitone. Lancet 1970;1:1359–61.CrossRefGoogle ScholarPubMed
Stocker, R, McDonagh, A F, Glazer, A N, Ames, B N. Antioxidant activities of bile pigments: biliverdin and bilirubin. Meth Enzymol 1990;186:301–9.CrossRefGoogle ScholarPubMed
McDonagh, A F. Is bilirubin good for you?Clin Perinatol 1990;17:359–69.CrossRefGoogle ScholarPubMed
Breimer, L H, Wannamethee, G, Ebrahim, S, Shaper, A G. Serum bilirubin and risk of ischemic heart disease in middle-aged British men. Clin Chem 1995;41:1504–8.Google ScholarPubMed
Schwertner, H A, Jackson, W G, Tolan, G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin Chem 1994;40:18–23.Google ScholarPubMed
Shevell, M I, Majnemer, A, Schiff, D. Neurologic perspectives of Crigler-Najjar syndrome type I. J Child Neurol 1998;13:265–9.CrossRefGoogle ScholarPubMed
Childs, B, Najjar, V A. Familial nonhemolytic jaundice with kernicterus. A report of two cases without neurologic damage. Pediatrics 1956;18:369–77.Google ScholarPubMed
Labrune, P H, Myara, A, Francoual, J. Cerebellar symptoms as the presenting manifestations of bilirubin encephalopathy in children with Crigler-Najjar type I disease. Pediatrics 1992;89(4 pt 2):768–70.Google Scholar
Chalasani, N, Chowdhury, N R, Chowdhury, J R, Boyer, T D. Kernicterus in an adult who is heterozygous for Crigler-Najjar syndrome and homozygous for Gilbert-type genetic defect. Gastroenterology 1997;112:2099–103.CrossRefGoogle Scholar
Gollan, J L, Huang, S M, Billing, B, Sherlock, S. Prolonged survival in 3 brothers with severe type II Crigler-Najjar syndrome: ultrastructural and metabolic studies. Gastroenterology 1975;68:1543–55.Google Scholar
Koiwai, O, Aono, S, Adachi, Y. Crigler-Najjar syndrome type II is inherited both as a dominant and as a recessive trait. Hum Mol Genet 1996;5:645–7.CrossRefGoogle Scholar
Burchell, B, Coughtrie, M W, Jansen, P L. Function and regulation of UDP-glucuronosyltransferase genes in health and liver disease: report of the Seventh International Workshop on Glucuronidation, September 1993, Pitlochry, Scotland. Hepatology 1994;20:1622–30.CrossRefGoogle ScholarPubMed
Seppen, J, Bosma, P J, Goldhoorn, B G. Discrimination between Crigler-Najjar type I and II by expression of mutant bilirubin uridine diphosphate-glucuronosyltransferase. J Clin Invest 1994;94:2385–91.CrossRefGoogle ScholarPubMed
Labrune, P, Myara, A, Hadchouel, M. Genetic heterogeneity of Crigler-Najjar syndrome type I: a study of 14 cases. Hum Genet 1994;94:693–7.CrossRefGoogle ScholarPubMed
Gantla, S, Bakker, C T, Deocharan, B. Splice-site mutations: a novel genetic mechanism of Crigler-Najjar syndrome type 1. Am J Hum Genet 1998;62:585–92.CrossRefGoogle ScholarPubMed
Ciotti, M, Chen, F, Rubaltelli, F F, Owens, I S. Coding defect and a TATA box mutation at the bilirubin UDP-glucuronosyltransferase gene cause Crigler-Najjar type I disease. Biochim Biophys Acta 1998;1407:40–50.CrossRefGoogle Scholar
Szabo, L, Kovács, Z, Ebrey, P B. Crigler-Najjar syndrome. Acta Paediatr Hung 1962;3:49–70.Google Scholar
Es, H H G, Goldhoorn, B G, Paul-Abrahamse, M. Immunochemical analysis of uridine diphosphate-glucuronosyltransferase in four patients with Crigler-Najjar syndrome type I. J Clin Invest 1990;85:1199–205.Google ScholarPubMed
Childs, B, Sidbury, J B, Migeon, C J. Glucuronic acid conjugation by patients with familial nonhemolytic jaundice and their relatives. Pediatrics 1959;23:903–13.Google ScholarPubMed
Szabo, L, Ebrey, P. Studies on the inheritance of Crigler-Najjar's syndrome by the menthol test. Acta Paediatr Hung 1963;4:153–9.Google ScholarPubMed
Hunter, J O, Thompson, P H, Dunn, P M, Williams, R. Inheritance of type 2 Crigler-Najjar hyperbilirubinemia. Gut 1973;14:46–9.CrossRefGoogle Scholar
Labrune, P, Myara, A, Hennion, C. Crigler-Najjar type II disease inheritance: a family study. J Inherit Metab Dis 1989; 12:302–6.CrossRefGoogle ScholarPubMed
Okolicsanyi, L, Nassauto, G, Muraca, M. Epidemiology of unconjugated hyperbilirubinemia: revisited. Semin Liver Dis 1988;8:179–82.CrossRefGoogle ScholarPubMed
Ertel, I J, Newton, WA Jr. Therapy in congenital hyperbilirubinemia: phenobarbital and diethylnicotinamide. Pediatrics 1969;44:43–8.Google ScholarPubMed
Crigler, J F, Gold, N I. Effect of phenobarbital on bilirubin metabolism in an infant with congenital, nonhemolytic, unconjugated hyperbilirubinemia, and kernicterus. J Clin Invest 1969;48:42–55.CrossRefGoogle Scholar
Yaffe, S J, Levy, G, Matsuzawa, T, Baliah, T. Enhancement of glucuronide-conjugating capacity in a hyperbilirubinemic infant due to apparent enzyme induction by phenobarbital. N Engl J Med 1966;275:1461–6.CrossRefGoogle Scholar
Kreek, M J, Sleisenger, M H. Reduction of serum-unconjugated bilirubin with phenobarbitone in adult nonhaemolytic unconjugated hyperbilirubinaemia. Lancet 1968;2:73–8.CrossRefGoogle Scholar
Rubaltelli, F F, Novello, A, Zancan, L. Serum and bile bilirubin pigments in the differential diagnosis of Crigler-Najjar disease. Pediatrics 1994;94:553–6.Google ScholarPubMed
Francoual, J, Trioche, P, Mokrani, C. Prenatal diagnosis of Crigler-Najjar syndrome type I by single-strand conformation polymorphism (SSCP). Prenat Diagn 2002;22:914–16.CrossRefGoogle Scholar
Ciotti, M, Obaray, R, Martin, M G, Owens, I S. Genetic defects at the UGT1 locus associated with Crigler-Najjar type I disease, including a prenatal diagnosis. Am J Med Genet 1997;68:173–8.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Moghrabi, N, Clarke, D J, Burchell, B, Boxer, M. Cosegregation of intragenic markers with a novel mutation that causes Crigler-Najjar syndrome type I: implication in carrier detection and prenatal diagnosis. Am J Hum Genet 1993;53:722–9.Google ScholarPubMed
Veere, C N, Sinaasappel, M, McDonagh, A F. Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 1996;24:311–15.CrossRefGoogle ScholarPubMed
Gorodischer, R, Levy, G, Krasner, J, Jaffe, S J. Congenital nonobstructive, nonhemolytic jaundice. effect of phototherapy. N Engl J Med 1970;282:375–80.CrossRefGoogle ScholarPubMed
Agati, G, Fusi, F, Pratesi, S. Bilirubin photoisomerization products in serum and urine from a Crigler-Najjar type I patient treated by phototherapy. J Photochem Photobiol 1998;47:181–9.CrossRefGoogle ScholarPubMed
Job, H, Hart, G, Lealman, G. Improvements in long term phototherapy for patients with Crigler-Najjar syndrome type I. Phys Med Biol 1996;41:2549–56.CrossRefGoogle ScholarPubMed
Nydegger, A, Bednarz, A, Hardikar, W. Use of daytime phototherapy for Crigler-Najjar disease. J Paediatr Child Health 2005;41:387–9.CrossRefGoogle ScholarPubMed
Kotal, P, Veere, C N, Sinaasappel, M. Intestinal excretion of unconjugated bilirubin in man and rats with inherited unconjugated hyperbilirubinemia. Pediatr Res 1997;42:195–200.CrossRefGoogle ScholarPubMed
Sherker, A H, Heathcote, J. Acute hepatitis in Crigler-Najjar syndrome. Am J Gastroenterol 1987;82:883–5.Google ScholarPubMed
Rubaltelli, F F, Guerrini, P, Reddi, E, Jori, G. Tin-protoporphyrin in the management of children with Crigler-Najjar disease. Pediatrics 1989;84:728–31.Google ScholarPubMed
Galbraith, R A, Drummond, G S, Kappas, A. Suppression of bilirubin production in the Crigler-Najjar type I syndrome: studies with the heme oxygenase inhibitor tin-mesoporphyrin. Pediatrics 1992;89:175–82.Google ScholarPubMed
Kappas, A, Drummond, G S, Galbraith, R A. Prolonged clinical use of a heme oxygenase inhibitor: hematological evidence for an inducible but reversible iron-deficiency state. Pediatrics 1993;91:537–9.Google ScholarPubMed
Rubaltelli, F F. Current drug treatment options in neonatal hyperbilirubinaemia and the prevention of kernicterus. Drugs 1998;56:23–30.CrossRefGoogle ScholarPubMed
Drummond, G S, Kappas, A. Chemoprevention of severe neonatal hyperbilirubinemia. Semin Perinatol 2004;28:365–8.CrossRefGoogle ScholarPubMed
Prager, M C, Johnson, K L, Ascher, N L, Roberts, J P. Anesthetic care of patients with Crigler-Najjar syndrome. Anesth Analg 1992;74:162–4.CrossRefGoogle ScholarPubMed
Whitington, P F, Emond, J C, Heffron, T, Thistlethwaite, J R. Orthotopic auxiliary liver transplantation for Crigler-Najjar syndrome type 1. Lancet 1993;342:779–80.CrossRefGoogle ScholarPubMed
Rela, M, Muiesan, P, Andreani, P. Auxiliary liver transplantation for metabolic diseases. Transpl Proc 1997;29:444–5.CrossRefGoogle ScholarPubMed
Rela, M, Muiesan, P, Vilca-Melendez, H. Auxiliary partial orthotopic liver transplantation for Crigler-Najjar syndrome type I. Ann Surg 1999;229:565–9.CrossRefGoogle ScholarPubMed
Kaufman, S S, Wood, R P, Shaw, BW Jr. Orthotopic liver transplantation for type 1 Crigler-Najjar syndrome. Hepatology 1986;6:1259–62.CrossRefGoogle ScholarPubMed
Shevell, M I, Bernard, B, Adelson, J W. Crigler-Najjar syndrome type I: treatment by home phototherapy followed by orthotopic hepatic transplantation. J Pediatr 1987;110:429–31.CrossRefGoogle ScholarPubMed
Sokal, E M, Silva, E S, Hermans, D. Orthotopic liver transplantation for Crigler-Najjar type I disease in six children. Transplantation 1995;60:1095–8.CrossRefGoogle ScholarPubMed
McDiarmid, S V, Millis, M J, Olthoff, K M, So, S K. Indications for pediatric liver transplantation. Pediatr Transpl 1998;2:106–16.Google ScholarPubMed
Rela, M, Muiesan, P, Heaton, N D. Orthotopic liver transplantation for hepatic-based metabolic disorders. Transpl Int 1995;8:41–4.CrossRefGoogle ScholarPubMed
Mowat, A P. Orthotopic liver transplantation in liver-based metabolic disorders. Eur J Pediatr 1992;151(suppl 1):S32–8.Google Scholar
Gridelli, B, Lucianetti, A, Gatti, S. Orthotopic liver transplantation for Crigler-Najjar type I syndrome. Transpl Proc 1997;29:440–1.CrossRefGoogle ScholarPubMed
Pratschke, J, Steinmuller, T, Bechstein, W O. Orthotopic liver transplantation for hepatic associated metabolic disorders. Clin Transpl 1998;12:228–32.Google ScholarPubMed
Toietta, G, Mane, V P, Norona, W S. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 2005;102:3930–5.CrossRefGoogle ScholarPubMed
Jaffe, B M, Burgos, A A, Martinez-Noack, M. The use of jejunal transplants to treat a genetic enzyme deficiency. Ann Surg 1996;223:649–56.CrossRefGoogle Scholar
Medley, M M, Hooker, R L, Rabinowitz, S. Correction of congenital indirect hyperbilirubinemia by small intestinal transplantation. Am J Surg 1995;169:20–7.CrossRefGoogle ScholarPubMed
Kokudo, N, Takahashi, S, Sugitani, K. Supplement of liver enzyme by intestinal and kidney transplants in congenitally enzyme-deficient rat. Microsurgery 1999;19:103–7.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Ambrosino, G, Varotto, S, Strom, S C. Isolated hepatocyte transplantation for Crigler-Najjar syndrome type 1. Cell Transpl 2005;14:151–7.CrossRefGoogle ScholarPubMed
Bellodi-Privato, M, Aubert, D, Pichard, V. Successful gene therapy of the Gunn rat by in vivo neonatal hepatic gene transfer using murine oncoretroviral vectors. Hepatology 2005;42:431–8.CrossRefGoogle ScholarPubMed
Jia, Z, Danko, I. Single hepatic venous injection of liver-specific naked plasmid vector expressing human UGT1A1 leads to long-term correction of hyperbilirubinemia and prevention of chronic bilirubin toxicity in Gunn rats. Hum Gene Ther 2005;16:985–95.CrossRefGoogle ScholarPubMed
Thummala, N R, Ghosh, S S, Lee, S W. A non-immunogenic adenoviral vector, coexpressing CTLA4Ig and bilirubinuridine-diphosphoglucuronateglucuronosyltransferase permits long-term, repeatable transgene expression in the Gunn rat model of Crigler-Najjar syndrome. Gene Ther 2002;9:981–90.CrossRefGoogle Scholar
Rotor, A B, Manahan, L, Florentin, A. Familial nonhemolytic jaundice with direct Van Den Bergh reaction. Acta Med Phil 1948;5:37–49.Google Scholar
Namihisa, T, Yamaguchi, K. The constitutional hyperbilirubinemia in Japan: studies on 139 cases reported during the period 1963–1969. Gastroenterol Jpn 1973;8:311–21.Google Scholar
Wolkoff, A W. Inheritable disorders manifested by conjugated hyperbilirubinemia. Semin Liver Dis 1983;3:65–72.CrossRefGoogle ScholarPubMed
Vest, M F, Kaufmann, J H, Fritz, E. Chronic nonhaemolytic jaundice with conjugated bilirubin in the serum and normal histology: a case study. Arch Dis Child 1960;36:600–4.CrossRefGoogle Scholar
Fretzayas, A, Koukoutsakis, P, Moustaki, M. Coinheritance of rotor syndrome, G-6-PD deficiency, and heterozygous beta thalassemia: a possible genetic interaction. J Pediatr Gastroenterol Nutr 2001;33:211–13.CrossRefGoogle ScholarPubMed
Pascasio, F M, Fuenta, D. Rotor-Manahan-Florentin syndrome: clinical and genetic studies. Phil J Int Med 1969;7:151–7.Google Scholar
Wolpert, E, Pascasio, F M, Wolkoff, A W. Abnormal sulfobromophthalein metabolism in Rotor's syndrome and obligate heterozygotes. N Engl J Med 1977;296:1099–101.CrossRefGoogle ScholarPubMed
Dhumeaux, D, Berthelot, P. Chronic hyperbilirubinemia associated with hepatic uptake and storage impairment. Gastroenterology 1975;69:988–93.Google ScholarPubMed
Wheeler, H O, Meltzer, J I, Bradley, S E. Biliary transport and hepatic storage of sulfobromophthalein sodium in the unanesthetized dog, in normal man, and in patients with hepatic disease. J Clin Invest 1960;39:1131–44.CrossRefGoogle ScholarPubMed
Tipping, E, Ketterer, B. The role of intracellular proteins in the transport and metabolism of lipophilic compounds. In: Blaver, G, Sund, H. Transport by proteins. Berlin: Walter de Gruyter & Co., 1978;369.Google Scholar
Adachi, Y, Yamamoto, T. Partial defect inhepatic glutathionine S-transferase activity in a case of Rotor's syndrome. Gastroenterology 1987;22:34–8.Google Scholar
Wolkoff, A W, Ketley, J N, Waggoner, J G. Hepatic accumulation and intracellular binding of conjugated bilirubin. J Clin Invest 1978;61:142–9.CrossRefGoogle ScholarPubMed
Wolkoff, A W, Wolpert, E, Pascasio, F N, Arias, I M. Rotor's syndrome. A distinct inheritable pathophysiologic entity. Am J Med 1976;60:173–9.CrossRefGoogle ScholarPubMed
Aziz, M A, Schwartz, S, Watson, C J. Studies on coproporphyrin VIII. Reinvestigation of the isomer distribution in jaundice and liver diseases. J Lab Clin Med 1964;63:596–604.Google ScholarPubMed
Shimizu, Y, Naruto, H, Ida, S, Kohakura, M. Urinary coproporphyrin isomers in Rotor's syndrome: a study in eight families. Hepatology 1981;1:173–8.CrossRefGoogle ScholarPubMed
Fretzayas, A M, Garoufi, A I, Moutsouris, C X, Karpathios, T E. Cholescintigraphy in the diagnosis of Rotor syndrome. J Nucl Med 1994;35:1048–50.Google Scholar
Bar-Meir, S, Baron, J, Seligson, U. 99mTc-HIDA cholescintigraphy in Dubin-Johnson and Rotor syndromes. Radiology 1982;142:743–6.CrossRefGoogle ScholarPubMed
Dubin, I N, Johnson, F B. Chronic idiopathic jaundice with unidentified pigment in liver cells: a new clincopathologic entity with a report of 12 cases. Medicine 1954;33:155–97.CrossRefGoogle Scholar
Dubin, I N. Chronic idiopathic jaundice. A review of fifty cases. Am J Med 1958;24:268–92.CrossRefGoogle ScholarPubMed
Gustein, S L, Alpert, L, Arias, I M. Studies of hepatic excretory function. IV. Biliary excretion of sulfobromophthalein sodium in a patient with Dubin-Johnson syndrome and a biliary fistula. Isr J Med Sci 1968;4:36–40.Google Scholar
Javitt, N B, Kondo, T, Kuchiba,, K. Bile acid excretion in Dubin-Johnson syndrome. Gastroenterology 1978;75:931–2.Google ScholarPubMed
Sprinz, H, Nelson, R S. Persistent nonhemolytic hyperbilirubinemia associated with lipochrome-like pigment in liver cells: report of four cases. Ann Intern Med 1954;41:952–62.Google Scholar
Shani, M, Seligsohn, V, Gilon, E. Dubin-Johnson syndrome in Israel. I. Clinical, laboratory and genetic aspects of 101 cases. Q J Med 1970;39:549–67.Google Scholar
Zlotogora, J. Hereditary disorders among Iranian Jews. Am J Med Genet 1995;58:32–7.CrossRefGoogle ScholarPubMed
Kondo, T, Yagi, R. Dubin-Johnson syndrome in a neonate. N Engl J Med 1975;292:1028–9.Google Scholar
Nakata, F, Oyanagi, K, Fujiwara, M. Dubin-Johnson syndrome in a neonate. Eur J Pediatr 1979;132:299–301.CrossRefGoogle Scholar
Haimi-Cohen, Y, Merlob, P, Marcus-Eidlits, T, Amir, J. Dubin-Johnson syndrome as a cause of neonatal jaundice: the importance of coproporphyrins investigation. Clin Pediatr 1998;37:511–13.CrossRefGoogle ScholarPubMed
Tsai, W H, Teng, R J, Chu, J S. Neonatal Dubin-Johnson syndrome. J Pediatr Gastroenterol Nutr 1994;18:253–4.CrossRefGoogle ScholarPubMed
Kimura, A, Ushijima, K, Kage, M. Neonatal Dubin-Johnson syndrome with severe cholestasis: effective phenobarbital therapy. Acta Paediatr Scand 1991;80:381–5.CrossRefGoogle ScholarPubMed
Shieh, C C, Chang, M H, Chen, C L. Dubin-Johnson syndrome presenting with neonatal cholestasis. Arch Dis Child 1990;65:898–9.CrossRefGoogle ScholarPubMed
Haimi-Cohen, Y, Amir, J, Merlob, P. Neonatal and infantile Dubin-Johnson syndrome. Pediatr Radiol 1998;28:900.CrossRefGoogle ScholarPubMed
Kimura, A, Yuge, K, Kosai, K I. Neonatal cholestasis in two siblings: a variant of Dubin-Johnson syndrome?J Paediatr Child Health 1995;31:557–60.CrossRefGoogle ScholarPubMed
Kondo, T, Kuchiba, K, Ohtsuka, Y. Clinical and genetic studies on Dubin-Johnson syndrome in a cluster area in Japan. Jpn J Hum Genet 1974;18:378–92.Google Scholar
Edwards, R H. Inheritance of the Dubin-Johnson-Sprinz syndrome. Gastroenterology 1975;63:734–49.Google Scholar
Cohen, L, Lewis, C, Arias, I M. Pregnancy, oral contraceptives and chronic familial jaundice with predominantly conjugated hyperbilirubinemia (Dubin-Johnson syndrome). Gastroenterology 1972;62:1182–90.Google Scholar
Muscatello, U, Mussini, I, Agnolucci, M T. Dubin-Johnson syndrome: an electron microscopic study of the liver cell. Acta Hepatosplenol 1967;14:162–70.Google ScholarPubMed
Ehrlich, J C, Novikoff, A B, Platt, R. Hepatocellular lipofuscin and the pigment of chronic idiopathic jaundice. Bull N Y Acad Med 1960;36:488–91.Google ScholarPubMed
Swartz, H M, Sarna, Varma, R R. On the nature and excretion of the hepatic pigment in the Dubin-Johnson syndrome. Gastroenterology 1979;76:958–64.Google Scholar
Swartz, H M, Chen, K, Roth, J A. Further evidence that the pigment in the Dubin-Johnson syndrome is not melanin. pigment cell research. 1987;1:69–75.CrossRefGoogle Scholar
Arias, I M, Blumberg, W. The pigment in Dubin-Johnson syndrome. Gastroenterology 1979;77:820–1.Google ScholarPubMed
Kitamura, T, Alroy, J, Gatmaitan, Z. Defective biliary excretion of epinephrine metabolites in mutant (TR−) rats: relation to the pathogenesis of black liver in the Dubin-Johnson syndrome and Corriedale sheep with an analogous excretory defect. Hepatology 1992;15:1154–9.CrossRefGoogle ScholarPubMed
Hunter, F M, Sparks, R D, Flinner, R L. Hepatitis with resulting mobilization of hepatic pigment in a patient with Dubin-Johnson syndrome. Gastroenterology 1964;47:631–5.Google Scholar
Kobayashi, Y, Ishihara, T, Wada, M. Dubin-Johnson-like black liver with normal bilirubin level. J Gastroenterol 2004;39:892–5.CrossRefGoogle ScholarPubMed
Paulusma, C C, Kool, M, Bosma, P J. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. Hepatology 1997;25:1539–42.CrossRefGoogle ScholarPubMed
Toh, S, Wada, M, Uchiumi, T. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/CMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet 1999;64:739–46.CrossRefGoogle ScholarPubMed
Kuijck, M A, Kool, M, Merkx, G F. Assignment of the canalicular multispecific organic anion transporter gene (CMOAT) to human chromosome 10q24 and mouse chromosome 19d2 by fluorescent in situ hybridization. Cytogenet Cell Genet 1997;77:285–7.CrossRefGoogle ScholarPubMed
Kajihara, S, Hisatomi, A, Mizuta, T. A splice mutation in the human canalicular multispecific organic anion transporter gene causes Dubin-Johnson syndrome. Biochem Biophys Res Commun 1998;253:454–7.CrossRefGoogle ScholarPubMed
Tsujii, H, König, J, Rost, D. Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin-Johnson syndrome. Gastroenterology 1999;117:653–60.CrossRefGoogle ScholarPubMed
Materna, V, Lage, H. Homozygous mutation Arg768Trp in the ABC-transporter encoding gene MRP2/CMOAT/ABCC2 causes Dubin-Johnson syndrome in a caucasian patient. J Hum Genet 2003;48:484–6.CrossRefGoogle Scholar
Machida, I, Wakusawa, S, Sanae, F. Mutational analysis of the MRP2 gene and long-term follow-up of Dubin-Johnson syndrome in Japan. J Gastroenterol 2005;40:366–70.CrossRefGoogle ScholarPubMed
Mendema, E, DeFraiure, W H, Nieweg, H O. Familial chronic idiopathic jaundice. Am J Med 1960;28:42–50.Google Scholar
Charbonnier, A, Brisbois, P. Etude chromatographique de la BSP au cours de l'epreuve clinique d'epuration plasmatique de ce colorant. Rev Int Hepatol. 1960;10:1163–213.Google Scholar
Shani, M, Gilon, E, Ben-Ezzer, J, Sheba, C. Sulfobromophthalein tolerance test in patients with Dubin-Johnson syndrome and their relatives. Gastroenterology 1970;59:842–7.Google ScholarPubMed
Abe, H, Okuda, K. Biliary excretion of conjugated sulfobromophthalein (BSP) in constitutional conjugated hyperbilirubinemias. Digestion 1975;13:272–83.CrossRefGoogle Scholar
Erlinger, S, Dhumeaux, D, Desjeux, J F, Benhamou, J P. Hepatic handling of unconjugated dyes in the Dubin-Johnson syndrome. Gastroenterology 1973;64:106–10.Google ScholarPubMed
Koskelo, P, Toivonen, I, Aldercreutz, H. Urinary coproporphyrin isomer distribution in Dubin-Johnson syndrome. Clin Chem 1967;13:1006–9.Google ScholarPubMed
Frank, M, Doss, M, Carvalho, D G. Diagnostic and pathogenetic implications of urinary coproporphyrin excretion in the Dubin-Johnson syndrome. Hepatogastroenterology 1990;37:147–51.Google ScholarPubMed
Ben-Ezzer, J, Seligson, U, Shani, M. Abnormal excretion of the isomers of urinary coproporphyrin by patients with Dubin-Johnson syndrome in Israel. Clin Sci 1971;40:17–30.CrossRefGoogle ScholarPubMed
Wolkoff, A W, Cohen, L E, Arias, I M. Inheritance of the Dubin-Johnson syndrome. N Engl J Med 1973;288:113–17.CrossRefGoogle ScholarPubMed
Kondo, T, Kuchiba, K, Shimizu, Y. Coporporphyrin isomers in Dubin-Johnson syndrome. Gastroenterology 1976;70:1117–20.Google Scholar
Rocchi, E, Balli, F, Gibertini, P. Coproporphyrin excretion in health newborn babies. J Pediatr Gastroenterol Nutr 1984;3:402–7.CrossRefGoogle Scholar
Kappas, A, Sassa, S, Anderson, K E. The metabolic basis of inherited disease. New York: McGraw-Hill, 1983:1299–384.Google Scholar
Garcia-Vargas, G G, Del Razo, L M, Cebrian, M E. Altered urinary porphyrin excretion in a human population chronically exposed to arsenic in Mexico. Hum Exp Toxicol 1994;13:839–47.CrossRefGoogle Scholar
Kladchareon, N, Suwannakul, P, Bauchum, V. Dubin-Johnson syndrome: report of two siblings with Tc-99 m IODIDA cholescintigraphic findings. J Med Assoc Thai 1988;71:640–2.Google ScholarPubMed
Pinós, T, Constansa, J M, Palacin, A, Figueras, C. A new diagnostic approach to the Dubin-Johnson syndrome. Am J Gastroenterol 1990;85:91–3.Google ScholarPubMed
Shimizu, T, Tawa, T, Maruyama, T. A case of infantile Dubin-Johnson syndrome with high CT attenuation in the liver. Pediatr Radiol 1997;27:345–7.CrossRefGoogle ScholarPubMed
Mayatepek, E, Lehmann, W D. Defective hepatobiliary leukotriene elimination in patients with the Dubin-Johnson syndrome. Clin Chim Acta 1996;249:37–46.CrossRefGoogle ScholarPubMed
Yoo, J, Reichert, D E, Kim, J. A potential Dubin-Johnson syndrome imaging agent: synthesis, biodistribution, and microPET imaging. Mol Imaging 2005;4:18–29.CrossRefGoogle ScholarPubMed
Lindberg, M C. Hepatobiliary complications of oral contraceptives. J Gen Intern Med 1992;7:199–209.CrossRefGoogle ScholarPubMed
Di Zoglio, J D, Cardillo, E. Dubin-Johnson syndrome and pregnancy. Obstet Gynecol 1973;42:560–3.CrossRefGoogle Scholar
Berk, P D, Noyer, C. The familial conjugated hyperbilirubinemias. Semin Liver Dis 1994;14:386–94.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×