Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T12:40:18.910Z Has data issue: false hasContentIssue false

13 - Nanoscale Water Imaged by In Situ TEM

from Part II - Applications

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lauga, E., Brenner, M. and Stone, H., Microfluidics: the no-slip boundary condition. In Tropea, C., Yarin, A., Foss, J., eds., Springer Handbook of Experimental Fluid Mechanics (Berlin, Heidelberg: Springer, 2007) pp. 12191240.CrossRefGoogle Scholar
Israelachvili, J., Electrostatic forces between surfaces in liquids. In Intermolecular and Surface Forces (New York: Academic Press, 2011) pp. 291337.Google Scholar
Parsons, R., The electrical double layer: recent experimental and theoretical developments. Chem. Rev., 90 (1990), 813826.CrossRefGoogle Scholar
Chan, C. U. and Ohl, C.-D., Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys. Rev. Lett., 109 (2012), 174501.Google Scholar
Xu, K., Cao, P. and Heath, J. R., Graphene visualizes the first water adlayers on mica at ambient conditions. Science, 329 (2010), 11881191.Google Scholar
Major, R. C., Houston, J. E., McGrath, M. J., Siepmann, J. I. and Zhu, X. Y., Viscous water meniscus under nanoconfinement. Phys. Rev. Lett., 96 (2006), 177803.CrossRefGoogle ScholarPubMed
Oh, S. H., Kauffmann, Y., Scheu, C., Kaplan, W. D. and Rühle, M., Ordered liquid aluminum at the interface with sapphire. Science, 310 (2005), 661663.CrossRefGoogle ScholarPubMed
Eswaramoorthy, S. K., Howe, J. M. and Muralidharan, G., In situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science, 318 (2007), 14371440.CrossRefGoogle ScholarPubMed
Howe, J. M., Interfaces in Materials: Atomic Structure, Thermodynamics and Kinetics of Solid-Vapor, Solid-Liquid and Solid-Solid Interfaces (New York: Wiley-Interscience, 1997).Google Scholar
Kaplan, W. D. and Kauffmann, Y., Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res., 36 (2006), 148.Google Scholar
Donnelly, S. E., Birtcher, R. C., Allen, C. W. et al., Ordering in a fluid inert gas confined by flat surfaces. Science, 296 (2002), 507510.CrossRefGoogle Scholar
Kim, B. J., Tersoff, J., Kodambaka, S. et al., Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science, 322 (2008), 10701073.CrossRefGoogle ScholarPubMed
Ho, T. A., Papavassiliou, D. V., Lee, L. L. and Striolo, A., Liquid water can slip on a hydrophilic surface. Proc. Natl. Acad. Sci. USA, 108 (2011), 1617016175.Google Scholar
Zhu, Y. and Granick, S., Viscosity of interfacial water. Phys. Rev. Lett., 87 (2001), 096104.CrossRefGoogle ScholarPubMed
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip, 12 (2012), 340347.CrossRefGoogle ScholarPubMed
Mirsaidov, U., Ohl, C.-D. and Matsudaira, P., A direct observation of nanometer-size void dynamics in an ultra-thin water film. Soft Matter, 8 (2012), 71087111.Google Scholar
Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. and Matsudaira, P., Direct observation of stick-slip movements of water nanodroplets induced by an electron beam. Proc. Natl. Acad. Sci. USA, 109 (2012), 71877190.CrossRefGoogle ScholarPubMed
Thompson, P. A. and Robbins, M. O., Origin of stick-slip motion in boundary lubrication. Science, 250 (1990), 792794.Google Scholar
Urbakh, M., Klafter, J., Gourdon, D. and Israelachvili, J., The nonlinear nature of friction. Nature, 430 (2004), 525528.Google Scholar
Zambrano, H. A., Walther, J. H., Koumoutsakos, P. and Sbalzarini, I. F., Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett., 9 (2008), 6671.Google Scholar
Halverson, J. D., Maldarelli, C., Couzis, A. and Koplik, J., A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient. J. Chem. Phys., 129 (2008), 164708164712.Google Scholar
Moosavi, A., Rauscher, M. and Dietrich, S., Motion of nanodroplets near edges and wedges. Phys. Rev. Lett., 97 (2006), 236101.CrossRefGoogle ScholarPubMed
Rio, E., Daerr, A., Lequeux, F. and Limat, L., Moving contact lines of a colloidal suspension in the presence of drying. Langmuir, 22 (2006), 31863191.Google Scholar
Brunet, P., Eggers, J. and Deegan, R. D., Vibration-induced climbing of drops. Phys. Rev. Lett., 99 (2007), 144501.CrossRefGoogle ScholarPubMed
Cottin-Bizonne, C., Cross, B., Steinberger, A. and Charlaix, E., Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett., 94 (2005), 056102.CrossRefGoogle ScholarPubMed
Sendner, C., Horinek, D., Bocquet, L. and Netz, R. R., Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Langmuir, 25 (2009), 1076810781.Google Scholar
de Gennes, P. G., Wetting: statics and dynamics. Rev. Mod. Phys., 57 (1985), 827863.Google Scholar
Berg, H., Random Walks in Biology (Princeton, NJ: Princeton University Press, 1993).Google Scholar
Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P. and Dahmen, U., Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett., 9 (2009), 24602465.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Lu, J., Aabdin, Z., Loh, N. D., Bhattacharya, D. and Mirsaidov, U., Nanoparticle dynamics in a nanodroplet. Nano Lett., 14 (2014), 21112115.Google Scholar
Grogan, J. M., Rotkina, L. and Bau, H. H., In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys. Rev. E, 83 (2011), 061405.CrossRefGoogle ScholarPubMed
Verch, A., Pfaff, M. and de Jonge, N., Exceptionally slow movement of gold nanoparticles at a solid/liquid interface investigated by scanning transmission electron microscopy. Langmuir, 31 (2015), 69566964.CrossRefGoogle Scholar
Li, T.-D., Gao, J., Szoszkiewicz, R., Landman, U. and Riedo, E., Structured and viscous water in subnanometer gaps. Phys. Rev. B, 75 (2007), 115415.Google Scholar
Jinesh, K. B. and Frenken, J. W. M., Capillary condensation in atomic scale friction: how water acts like a glue. Phys. Rev. Lett., 96 (2006), 166103.Google Scholar
Chen, Q., Smith, J. M., Park, J. et al., 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett., 13 (2013), 45564561.Google Scholar
Park, J., Zheng, H., Lee, W. C. et al., Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. ACS Nano, 6 (2012), 20782085.Google Scholar
Barkay, Z., Wettability study using transmitted electrons in environmental scanning electron microscope. Appl. Phys. Lett., 96 (2010), 183109–183103.CrossRefGoogle Scholar
Barkay, Z., Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films. Langmuir, 26 (2010), 1858118584.Google Scholar
Rykaczewski, K. and Scott, J. H. J., Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano, 5 (2011), 59625968.CrossRefGoogle ScholarPubMed
Rykaczewski, K., Scott, J. H. J., Rajauria, S. et al., Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter, 7 (2011), 87498752.CrossRefGoogle Scholar
Miljkovic, N., Enright, R. and Wang, E. N., Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano, 6 (2012), 17761785.CrossRefGoogle ScholarPubMed
Rykaczewski, K., Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir, 28 (2012), 77207729.Google Scholar
Bhattacharya, D., Bosman, M., Mokkapati, V. R. S. S., Leong, F. Y. and Mirsaidov, U., Nucleation dynamics of water nanodroplets. Microsc. Microanal., 20 (2014), 407415.CrossRefGoogle ScholarPubMed
Leach, R. N., Stevens, F., Langford, S. C. and Dickinson, J. T., Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir, 22 (2006), 88648872.CrossRefGoogle Scholar
Steyer, A., Guenoun, P., Beysens, D. and Knobler, C. M., Growth of droplets on a substrate by diffusion and coalescence. Phys. Rev. A, 44 (1991), 82718277.CrossRefGoogle ScholarPubMed
Rogers, T. M., Elder, K. R. and Desai, R. C., Droplet growth and coarsening during heterogeneous vapor condensation. Physi. Rev. A, 38 (1988), 53035309.Google Scholar
Ucar, I. O. and Erbil, H. Y., Use of diffusion controlled drop evaporation equations for dropwise condensation during dew formation and effect of neighboring droplets. Coll. Surf. A: Physicochem. Eng. Aspects, 411 (2012), 6068.Google Scholar
Whitby, M. and Quirke, N., Fluid flow in carbon nanotubes and nanopipes. Nat. Nano, 2 (2007), 8794.Google Scholar
Naguib, N., Ye, H., Gogotsi, Y. et al., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett., 4 (2004), 22372243.CrossRefGoogle Scholar
Mattia, D. and Gogotsi, Y., Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid, 5 (2008), 289305.Google Scholar
Rossi, M. P., Ye, H., Gogotsi, Y. et al., Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett., 4 (2004), 989993.Google Scholar
Patra, N., Wang, B. and Král, P., Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett., 9 (2009), 37663771.Google Scholar
Mirsaidov, U., Mokkapati, V. R. S. S., Bhattacharya, D. et al., Scrolling graphene into nanofluidic channels. Lab Chip, 13 (2013), 28742878.CrossRefGoogle ScholarPubMed
Dukes, M. J., Jacobs, B. W., Morgan, D. G., Hegde, H. and Kelly, D. F., Visualizing nanoparticle mobility in liquid at atomic resolution. Chem. Commun., 49 (2013), 30073009.Google Scholar
Craster, R. V. and Matar, O. K., Dynamics and stability of thin liquid films. Rev.Mod. Phys., 81 (2009), 11311198.Google Scholar
White, E. R., Mecklenburg, M., Singer, S. B., Aloni, S. and Regan, B. C., Imaging nanobubbles in water with scanning transmission electron microscopy. Appl. Phys. Express, 4 (2011), 055201.Google Scholar
Grogan, J. M., Schneider, N. M., Ross, F. M. and Bau, H. H., Bubble and pattern formation in liquid induced by an electron beam. Nano Lett., 14 (2013), 359364.CrossRefGoogle ScholarPubMed
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J. et al., Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter, 9 (2013), 88568861.CrossRefGoogle Scholar
Redon, C., Brochard-Wyart, F. and Rondelez, F., Dynamics of dewetting. Phys. Rev. Lett., 66 (1991), 715718.Google Scholar
Elbaum, M. and Lipson, S. G., How does a thin wetted film dry up? Phys. Rev. Lett., 72 (1994), 35623565.Google Scholar
Thiele, U., Mertig, M. and Pompe, W., Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys. Rev. Lett., 80 (1998), 28692872.Google Scholar
Pompe, T. and Herminghaus, S., Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett., 85 (2000), 19301933.CrossRefGoogle ScholarPubMed
Ross, J. R. H., Heterogeneous Catalysis: Fundamentals and Applications (Kidlington, UK: Elsevier, 2011).Google Scholar
Reddy, T., Linden’s Handbook of Batteries, 4th edn. (New York: McGraw-Hill Professional, 2010).Google Scholar
Tarascon, J. M. and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Ebbinghaus, S., Kim, S. J., Heyden, M. et al., An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. USA, 104 (2007), 2074920752.CrossRefGoogle ScholarPubMed
Squires, T. M. and Quake, S. R., Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys., 77 (2005), 9771026.Google Scholar
Tai, K., Liu, Y. and Dillon, S. J., In situ cryogenic transmission electron microscopy for characterizing the evolution of solidifying water ice in colloidal systems. Microsc. Microanal., 20 (2014), 330337.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×