Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:33:49.689Z Has data issue: false hasContentIssue false

11 - Influences of Biological and Self-Initiated Factors on Brain and Cognition in Adulthood and Aging

Published online by Cambridge University Press:  17 July 2009

Lars Nyberg
Affiliation:
Professor of Neuroscience Umeå University, Sweden
Lars Bäckman
Affiliation:
Professor of Psychology Aging Research Center, Karolinska Institute, Stockholm, Sweden
Paul B. Baltes
Affiliation:
Max-Planck-Institut für Bildungsforschung, Berlin
Patricia A. Reuter-Lorenz
Affiliation:
University of Michigan, Ann Arbor
Frank Rösler
Affiliation:
Philipps-Universität Marburg, Germany
Get access

Summary

ABSTRACT

Age-related memory deficits are most pronounced on demanding tests of working memory and episodic memory, and are more pronounced in some older individuals than in others. In this chapter, we review individual-difference factors that influence memory functioning in adulthood and aging. A distinction is drawn between two categories of factors. The first includes biological factors that impose constraints by predisposing the aging brain toward cognitive decline. The second category includes a more heterogeneous collection of factors that are self-initiated and may be seen as offering possibilities rather than imposing constraints. We conclude by presenting some intriguing avenues for future research.

INTRODUCTION

Increasing age leads to impaired memory function. Although this bold and perhaps depressing opening statement has been supported by numerous empirical observations, it has to be qualified in several ways. First, all memory functions are not uniformly affected by aging. In the domain of short-term working memory, age differences are modest on tasks that involve the passive holding of information over some restricted time period, whereas tasks that more heavily tax executive processes by requiring both holding and manipulation of memory information are associated with much more pronounced age differences. Within the domain of long-term memory, declarative (i.e., episodic and semantic) memory is more age sensitive than nondeclarative (i.e., procedural) memory. Also, within declarative memory, aging seems to have quite differential effects (e.g., Nyberg, Maitland et al., 2003; Fig. 11.1).

Type
Chapter
Information
Lifespan Development and the Brain
The Perspective of Biocultural Co-Constructivism
, pp. 239 - 254
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, M. S., & Killiany, R. J. (2001). Age-related cognitive change and brain–behavior relationships. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 161–185). San Diego: Academic PressGoogle Scholar
Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Reineck, R., Winblad, B., & Långström, B. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9, 378–391CrossRefGoogle Scholar
Bäckman, L., Andersson, J. L. R., Nyberg, L., Winblad, B., Nordberg, A., & Almkvist, O. (1999). Brain regions associated with episodic retrieval of verbal information in normal aging and Alzheimer's disease. Neurology, 52, 1861–1870CrossRefGoogle ScholarPubMed
Bäckman, L., & Farde, L. (2004). The role of dopamine systems in cognitive aging. In R. Cabeza, L. Nyberg, & D. C. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 58–84). Oxford, UK:Oxford University PressGoogle Scholar
Bäckman, L., Ginovart, N., Dixon, R. A., Robins Wahlin, T.-B., Wahlin, Å., Halldin, C., & Farde, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157, 635–637CrossRefGoogle ScholarPubMed
Bäckman, L., Small, B. J., & Wahlin, Å. (2001). Aging and memory: Cognitive and biological perspectives. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 349–377). San Diego:Academic PressGoogle Scholar
Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA, 13, 2271–2281CrossRefGoogle Scholar
Bannon, M. J., & Whitty, C. J. (1997). Age-related and regional differences in dopamine mRNA expression in human midbrain. Neurology, 48, 969–977CrossRefGoogle ScholarPubMed
Bassuk, S. S., Glass, T. A., & Berkman, L. F. (1999). Social disengagement and incident cognitive decline in community-dwelling elderly persons. Annals of Internal Medicine, 131, 165–173CrossRefGoogle ScholarPubMed
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A.. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746–763CrossRefGoogle ScholarPubMed
Buckner, R. L. (2005). Three principles for cognitive aging research: Multiple causes and sequelae, variance in expression and response, and the need for integrative theory. In R. Cabeza, L. Nyberg, & D. C. Park (Eds.), Cognitive neuroscience of aging: Linking cognitive and cerebral aging (pp. 267–285). Oxford, UK:Oxford University PressGoogle Scholar
Bullmore, E., Suckling, J., Zelaya, F., Long, C., Honey, G., Reed, L., et al. (2003). Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cerebral Cortex, 13, 144–154CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85–100CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17, 1394–1402CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 1–47CrossRefGoogle ScholarPubMed
Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journal of Gerontology: Medical Sciences, 58A, M176–M180Google Scholar
Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14, 125–130CrossRefGoogle ScholarPubMed
Ericsson, K. A. (2003). Exceptional memorizers: Made, not born. Trends in Cognitive Sciences, 7, 233–235CrossRefGoogle Scholar
Esposito, G., Kirby, G. S., Horn, J. D., Ellmore, T. M., & Faith Berman, K. (1999). Context-dependent, neural system-specific neurophysiological concomitants of ageing: Mapping PET correlates during cognitive activation. Brain, 122, 963–979CrossRefGoogle ScholarPubMed
Fratiglioni, L., Wang, H. X., Ericsson, K., Maytan, M., & Winblad, B. (2000). Influence of social network on the occurrence of dementia: A community-based longitudinal study. Lancet, 355, 1315–1319CrossRefGoogle ScholarPubMed
Goldman, W. P., Price, J. L., Storandt, M., Grant, E. A., McKeel, D. W., Rubin, E. H., & Morris, J. C. (2001). Absence of cognitive impairment or decline in preclinical Alzheimer's disease. Neurology, 56, 361–367CrossRefGoogle ScholarPubMed
Gunning-Dixon, F. M., & Raz, N. (2003). Neuroanatomical correlates of selected executive functions in middle-aged and older adults: A prospective MRI study. Neuropsychologia, 41, 1929–1941CrossRefGoogle ScholarPubMed
Habib, R., Nyberg, L., & Nilsson, L.-G. (in press). Cognitive and Non-Cognitive Factors Contributing to the Longitudinal Identification of Successful Older Adults in the Betula Study. Aging, Neuropsychology, and Cognition. Manuscript accepted for publication
Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: The HERA model revisited. Trends in Cognitive Science, 7, 241–245CrossRefGoogle ScholarPubMed
Hill, R. D., Nilsson, L.-G., Nyberg, L., & Bäckman, L. (2003). Cigarette smoking and cognitive performance in healthy Swedish adults. Age and Ageing, 32, 548–550CrossRefGoogle ScholarPubMed
Johansson, B., Whitfield, K., Pedersen, N. L., Hofer, S. M., Ahern, F., & McClearn, G. E. (1999). Origins of individual differences in episodic memory in the oldest-old: A population-based study of identical and same-sex fraternal twins aged 80 or older. Journal of Gerontology: Psychological Sciences, 54, P173–P179CrossRefGoogle ScholarPubMed
Kaye, J. A., Swihart, T., Howieson, D., Dame, A., Moore, M. M., Karnos, T., et al. (1997). Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology, 48, 1297–1304CrossRefGoogle ScholarPubMed
Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation to cognition. Trends in Cognitive Science, 5, 479–486CrossRefGoogle Scholar
Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Broeckhoven, C., Adolfsson, R., Bäckman, L., Nilsson, L-G., Petersson, K.-M., & Nyberg, L. (in press). Reduced functional brain activity in cognitively intact apolipoprotein e4 carriers. Manuscript submitted for publication
Logan, J. M., Sanders, A. L., Snyder, A. Z., Morris, J. C., & Buckner, R. L. (2002). Under-recruitment and nonselective recruitment: Dissociable neural mechanisms with aging. Neuron, 33, 827–840CrossRefGoogle ScholarPubMed
Lupien, S. J., Leon, M., Desanti, S., Convit, A., Tarshish, C., Nair, N. P. V.. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 69–73CrossRefGoogle ScholarPubMed
Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: The brains behind superior memory. Nature Neuroscience, 6, 90–95CrossRefGoogle ScholarPubMed
Mayeux, R., Ottman, R., Maestre, G., Ngai, C., Tang, M.-X., Ginsberg, H., et al. (1995). Synergistic effects of traumatic head injury and apolipoprotein-ɛ4 in patients with Alzheimer's disease. Neurology, 45, 555–557CrossRefGoogle Scholar
McClearn, G. E., & Vogler, G. P. (2001). The genetics of behavioral aging. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 109–131). San Diego: Academic PressGoogle Scholar
Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., & Nilsson, L.-G. (2003). Selective adult age differences in an age-invariant multi-factor model of declarative memory. Psychology and Aging, 18, 149–160CrossRefGoogle Scholar
Nyberg, L., Sandblom, J., Jones, S., Stigsdotter Neely, A., Petersson, K. M., Ingvar, M., & Bäckman, L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proceedings of the National Academy of Sciences (USA), 100, 13728–13733CrossRefGoogle ScholarPubMed
O'Hara, R., Yesavage, J. A., Kraemer, H. C., Mauricio, M., Friedman, L. F., & , Murphy G. M. Jr. (1998). The APOE epsilon 4 allele is associated with decline on delayed recall performance in community-dwelling older adults. Journal of the American Geriatrics Society, 46, 1493–1498CrossRefGoogle Scholar
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79CrossRefGoogle ScholarPubMed
O'Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C. R., & Markus, H. S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57, 632–638CrossRefGoogle ScholarPubMed
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.-G., Ingvar, M., & Buckner, R. L. (2005). Structure–function correlates of cognitive decline in aging. Cerebral Cortex,Google Scholar
Ranganath, C., & D'Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K. M., Head, D., Kennedy, K. M., & Acker, J. D. (2004). Differential aging of the medial temporal lobe: A study of five-year change. Neurology, 62, 433–438CrossRefGoogle ScholarPubMed
Reeves, S., Bench, C., & Howard, R. (2002). Aging and the nigrostriatal dopamine system. International Journal of Geriatric Psychiatry, 17, 359–370CrossRefGoogle Scholar
Reiman, E. M., Chen, K. W., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2004). Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proceedings of the National Academy of Sciences (USA), 101, 284–289CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P. A. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6, 394–400CrossRefGoogle ScholarPubMed
Rinne, J. O., Lönnberg, P., & Marjamäki, P. (1990). Age-dependent decline of dopamine-D1 and dopamine-D2 receptor. Brain Research, 508, 349–352CrossRefGoogle Scholar
Rönnlund, M., Nyberg, L., Bäckman, L., & Nilsson, L.-G. (2005). Stability, improvement, and decline in adult-life span development of declarative memory: Cross-sectional and longitudinal data from a population-based sample. Psychology and AgingCrossRefGoogle Scholar
Rowe, J. W., & Kahn, R. L. (1987). Human aging: Usual and successful. Science, 237, 143–149CrossRefGoogle ScholarPubMed
Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25, 625–633CrossRefGoogle Scholar
Scarmeas, N., Zarahn, E., Anderson, K. E., Habeck, C. G., Hilton, J., & Flynn, J. (2003). Association of life activities with cerebral blood flow in Alzheimer's disease. Archives of Neurology, 60, 359–365CrossRefGoogle Scholar
Small, B. J., Basun, H., & Bäckman, L. (1998). Three-year changes in cognitive performance as a function of apolipoprotein E genotype: Evidence from very old adults without dementia. Psychology and Aging, 13, 80–87CrossRefGoogle ScholarPubMed
Smith, C. D., Andersen A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., & Avison, M. J. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology, 53, 1391–1396CrossRefGoogle ScholarPubMed
Söderlund, H., Nyberg, L., Nilsson, L.-G., & Launer, L. J. (2003). High prevalence of white matter lesions in normal aging: Relation to blood pressure and cognition. Cortex, 39, 1093–1105CrossRefGoogle Scholar
Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., & Roses, A. D. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer's disease. Proceedings of the National Academy of Sciences (USA), 90, 1977–1981CrossRefGoogle Scholar
Verhaeghen, P., & Marcoen, A. (1996). On the mechanisms of plasticity in young and older adults after instruction in the method of loci: Evidence for an amplification model. Psychology and Aging, 11, 164–178CrossRefGoogle Scholar
Volkow, N. D., Gur, R. C., Wang, G.-J., Fowler, J. S., Moberg, P. J., Ding, Y. S.. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. American Journal of Psychiatry, 155, 344–349Google ScholarPubMed
Wahlund, L.-O., Almkvist, O., Basun, H., & Julin, P. (1996). MRI in successful aging: A 5-year follow-up study from the eighth to ninth decade of life. Magnetic Resonance Imaging, 14, 601–608CrossRefGoogle ScholarPubMed
Wang, Y., Chan, G. L. Y., Holden, J. E., Dobko, T., Mak, E., Schulzer, M., et al. (1998). Age-dependent decline of dopamine D1 receptors in human brain: A PET study. Synapse, 30, 56–613.0.CO;2-J>CrossRefGoogle ScholarPubMed
Wheeler, M. A., Stuss, D. T., & Tulving, E. (1995). Frontal lobe damage produces memory impairment. Journal of the International Neuropsychological Society, 1, 525–536CrossRefGoogle ScholarPubMed
Wilson, R. S., Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA, 287, 742–748CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×