Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T06:14:49.357Z Has data issue: false hasContentIssue false

6 - Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments

Published online by Cambridge University Press:  06 July 2010

Peter T. Doran
Affiliation:
University of Illinois, Chicago
W. Berry Lyons
Affiliation:
Ohio State University
Diane M. McKnight
Affiliation:
University of Colorado, Boulder
Get access

Summary

Introduction

On the basis of the prevalence of cold environments in our solar system, the search for extraterrestrial life is focused largely on icy habitats. The McMurdo Dry Valleys (MDV) area is a polar desert with a mean annual temperature below freezing and extremely low humidity (Wharton et al.,1995) and thus offers a suitable earthly analog to our nearest exobiological candidate, Mars. Water is thought to have been abundant on Mars early in its geological history (Solomon et al., 2005; Squyres et al., 2006; Head and Marchant, this volume, Chapter 2) and perhaps may even have flowed across the surface more recently (Hauber et al., 2005; Head et al., 2005; Malin et al., 2006). Life as we know it requires the presence of liquid water to mediate biochemical reactions for energy as well as a reasonably stable environment in which to grow; therefore the search for extraterrestrial life has been largely a search for environments where liquid water can be maintained for some duration (e.g., Carr, 1983).

There is significant geomorphological evidence, and mounting physical evidence supporting the presence of paleolakes on ancient Mars (Squyres et al., 2006). This intrigues exobiologists because paleolakes would provide a suitable habitat for early martian life forms (Carr, 1983; Wharton et al., 1995; Doran et al., 2004). Lakes on the martian surface would have become progressively colder over geological time, developing seasonal and eventually perennial ice covers (Carr, 1983).

Type
Chapter
Information
Life in Antarctic Deserts and other Cold Dry Environments
Astrobiological Analogs
, pp. 160 - 194
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, G., McKnight, D., Harnish, R., and Wershaw, R. (1996). Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry, 34, 157–188.CrossRefGoogle Scholar
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589–594.CrossRefGoogle Scholar
Barrett, P. J. and Hambrey, M. J. (1992). Plio-Pleistocene sedimentation in Ferrar Fiord, Antarctica. Sedimentology, 39, 109–123.CrossRefGoogle Scholar
Black, R. F., Jackson, M. L., and Berg, T. E. (1965). Saline discharge from Taylor Glacier, Victoria Land, Antarctica. Journal of Geology, 74, 175–181.CrossRefGoogle Scholar
Bomblies, A., McKnight, D., and Andrews, E. D. (2001). Retrospective simulation of lake level rise in Lake Bonney based on recent 21-year record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 477–492.CrossRefGoogle Scholar
Bratina, B. J., Stevenson, B. S., Green, W. J., and Schmidt, T. M. (1998). Manganese reduction by microbes from oxic regions of Lake Vanda (Antarctica) water column. Applied and Environmental Microbiology, 64, 3791–3797.Google ScholarPubMed
Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 2377–2391.CrossRefGoogle Scholar
Burt, D. M. and Knauth, L. P. (2003). Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. Journal of Geophysical Research, 108, 1–6.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification, and ages of Martian impact crater lakes. Icarus, V142, 160–172.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (2001). The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant?Icarus, V149, 291–328.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A. (2005). Ancient and Recent lakes on Mars. In Water on Mars and Life: Advances in Astrobiology and Biogeophysics, ed. Tokano, T.. Berlin: Springer Verlag, pp. 235–259.Google Scholar
Calkin, P. E. and Bull, C. (1967). Lake Vida, Victoria Valley, Antarctica. Journal of Glaciology, 6, 833–836.CrossRefGoogle Scholar
Canfield, D. E. and Green, W. J. (1985). The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry, 1, 233–256.CrossRefGoogle Scholar
Carlson, C. A., Phillips, F. M., Elmore, D., and Bentley, H. W. (1990). Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. Geochimica et Cosmochimica Acta, 54, 311–318.CrossRefGoogle Scholar
Carr, M. H. (1983). Stability of streams and lakes on Mars. Icarus, 56, 476–495.CrossRefGoogle Scholar
Cartwright, K. and Harris, H. J. H. (1981). Hydrogeology of the Dry Valley region, Antarctica. Antarctic Research Series, 33, 193–214.CrossRefGoogle Scholar
Chinn, T. J. (1993). Physical hydrology of the dry valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J., and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 1–52.Google Scholar
Clocksin, K. M., Jung, D. O., and Madigan, M. T. (2007). Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 73, 3077–3083.CrossRefGoogle ScholarPubMed
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G., and House, H. R. (1998). Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 93–108.Google Scholar
Davey, M. C. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology, 10, 29–36.CrossRefGoogle Scholar
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., and Wilch, T. I. (1993). East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, 75A, 155–204.CrossRefGoogle Scholar
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2002). Recent climate cooling and ecosystem response in the McMurdo Dry Valleys, Antarctica. Nature, 415, 517–520.CrossRefGoogle Scholar
Doran, P. T., Fritsen, C. H., McKay, C. P., Priscu, J. C., and Adams, E. E. (2003). Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. PNAS, 100, 26–31.CrossRefGoogle Scholar
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2004). Paleolimnnology of extreme cold terrestrial and extraterrestrial environments. In Long-Term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., and Smoll, J. P.. Amsterdam, Netherlands: Kluwer Academic Publishers, pp. 475–507.CrossRefGoogle Scholar
Fassett, C. I. and Head, III, J. W. (2008). Open-basin lakes on Mars: implications of valley network lakes for the nature of Noachian hydrology. Lunar and Planetary Science, 39, Abstract 1139.Google Scholar
Fernández-Valiente, E., Quesada, A., Howard-Williams, C., and Hawes, I. (2001). N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecology, 42, 338–349.CrossRefGoogle ScholarPubMed
Fishbaugh, K., Poulet, F., Langevin, Y., Chevrier, V., and Bibring, J.-P. (2007). On the origin of gypsum in the Mars North Polar Region. Journal of Geophysical Research, 112(E07002), doi: 10.1029/2006JE002862.CrossRefGoogle Scholar
Foreman, C. M., Wolf, C. F., and Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical, and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239–268.CrossRefGoogle Scholar
Fountain, A. G., Lyons, W. B., Burkins, M. B., et al. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 4, 961–973.CrossRefGoogle Scholar
Fritsen, C. H. and Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.CrossRefGoogle Scholar
Fritsen, C. H., Adams, E. E., McKay, C. P., and Priscu, J. C. (1998). Permanent ice covers of the McMurdo Dry Valleys Lakes, Antarctica: liquid water contents. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 269–280.Google Scholar
Glatz, R. E., Lepp, P. W., Ward, B. B., and Francis, C. A. (2006). Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology, 4, 53–67.CrossRefGoogle Scholar
Goldspiel, J. M. and Squyres, S. W. (1991). Ancient aqueous sedimentation on Mars. Icarus, 89, 392–410.CrossRefGoogle Scholar
Gorden, D. A., Priscu, J. C., and Giovannoni, S. (2000). Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microbial Ecology, 39, 197–202.Google Scholar
Grant, W. D. (2004). Life at low water activity. Philosophical Transactions of the Royal Society of London, Series B, 359, 1249–1267.CrossRefGoogle ScholarPubMed
Green, W. J. and Canfield, D. E. (1984). Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochimica et Cosmochimica Acta, 48, 2457–2468.CrossRefGoogle Scholar
Green, W. J., Anglem, P., and Chavek, E. (1988). The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochimica et Cosmochimica Acta, 52, 1265–1274.CrossRefGoogle Scholar
Green, W. J., Canfield, D. E., Shengsong, Y., et al. (1993). Metal transport and release processes in Lake Vanda: the role of oxide phases. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 145–163.CrossRefGoogle Scholar
Green, W. J., Canfield, D. E., and Nixon, P. (1998). Cobalt cycling and fate in Lake Vanda. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 205–215.Google Scholar
,Group, MSR–SA (2006). Findings of the Mars Special Regions Science Analysis Group. Astrobiology, 6, 677–732.
Hage, M. M., Uhle, M. E., and Macko, S. (2007). Biomarker and stable isotope characterization of coastal pond-derived organic matter, McMurdo Dry Valleys, Antarctica. Astrobiology, 7, 645–661.CrossRefGoogle ScholarPubMed
Hall, B. L. and Denton, G. H. (2000). Radiocarbon chronology of Ross Sea Drift, Eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximum. Geografiska Annaler, 82, 305–336.CrossRefGoogle Scholar
Hall, B. L., Denton, G. H., and Hendy, C. H. (2000). Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler, 82, 275–303.CrossRefGoogle Scholar
Hallsworth, J. E., Yakimov, M. M., Golyshin, P. N., et al. (2007). Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environmental Microbiology, 9, 801–803.CrossRefGoogle ScholarPubMed
Harris, H. J. H. and Cartright, , K. (1981). Hydrology of the Don Juan basin, Wright Valley, Antarctica. Antarctic Research Series, 33, 161–184.CrossRefGoogle Scholar
Hauber, E., Gasselt, S., Ivanov, B., et al. (2005). Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 434, 356–361.CrossRefGoogle ScholarPubMed
Hawes, I. (1990). Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 29, 326–331.CrossRefGoogle Scholar
Hawes, I. and Howard-Williams, C. (1998). Primary production processes in streams of the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 129–140.Google Scholar
Hawes, I. and Schwarz, A. M. (1999). Photosynthesis in an extreme shade environment, benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. Journal of Phycology, 35, 448–459.CrossRefGoogle Scholar
Hawes, I., Howard-Williams, C., and Vincent, W. F. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biology, 12, 587–594.CrossRefGoogle Scholar
Hawes, I., Howard-Williams, C., and Pridmore, R. D. (1993). Environmental controls on microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Archive fur Hydrobiologie, 127, 271–287.Google Scholar
Hawes, I., Smith, R., Howard-Williams, C., and Schwarz, A. M. (1999). Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarctic Science, 11, 198–208.CrossRefGoogle Scholar
Hawes, I., Moorhead, D. L., Sutherland, D., Schmeling, J., and Schwarz, A. M. (2001). Benthic primary production in two perennially ice-covered Antarctic lakes, patterns of biomass accumulation with a model of community metabolism. Antarctic Science, 13, 18–27.CrossRefGoogle Scholar
Head, J. W., Neukum, G., Jaumann, R., et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow, and glaciation on Mars. Nature, 434, 346–351.CrossRefGoogle ScholarPubMed
Healy, M., Webster-Brown, J. G., Brown, K. L., and Lane, V. (2006). Chemistry and stratification of Antarctic meltwater ponds. II. Inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525–533.CrossRefGoogle Scholar
Hendy, C. H. (2000). Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82, 411–432.CrossRefGoogle Scholar
Hendy, C. H., Wilson, A. T., Popplewell, K. B., and House, D. A. (1977). Dating of geochemical events in Lake Bonney, Antarctica and their relation to glacial and climatic changes. New Zealand Journal of Geology and Geophysics, 20, 1103–1122.CrossRefGoogle Scholar
Holmes, D. E., Nicoll, J. S., Bond, D. R., and Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied Environmental Microbiology, 70, 6023–6030.CrossRefGoogle ScholarPubMed
Hood, E. M., Howes, B. L., and Jenkins, W. J. (1998). Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnology and Oceanography, 43, 265–272.CrossRefGoogle Scholar
Horowitz, N. H., Cameron, R. E., and Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science, 176, 242–245.CrossRefGoogle ScholarPubMed
Howard-Williams, C. and Hawes, I. (2007). Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarctic Science, 19, 205–217.CrossRefGoogle Scholar
Howard-Williams, C., Schwarz, A. M., Hawes, I., and Priscu, J. C. (1998). Optical properties of lakes of the McMurdo Dry Valley region, Antarctica. In The McMurdo Dry Valleys, Antarctica: A Cold Desert Ecosystem, ed. Priscu, J. C.. Washington, D.C.: American Geophysical Union, pp. 189–203.Google Scholar
Hubbard, A., Lawson, W., Anderson, B., Hubbard, B., and Blatter, H. (2004). Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Annals of Glaciology, 39, 79–84.CrossRefGoogle Scholar
Jakosky, B. M., Amend, J. P.,Berelson, W. M., et al. (2007). An Astrobiology Strategy for the Exploration of Mars. Report by Space Studies Board, National Research Council. Washington, D.C.: National Academies Press.Google Scholar
Karr, E. A., Sattley, W. M., Jung, D. O., et al. (2003). Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Applied Environmental Microbiology, 69, 4910–4914.CrossRefGoogle Scholar
Karr, E. A., Sattley, W. M., Rice, M. R., et al. (2005). Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 71, 6353–6359.CrossRefGoogle ScholarPubMed
Kaye, J. Z. and Baross, J. A. (2000). High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiology Ecology, 32, 249–260.CrossRefGoogle ScholarPubMed
Kennett, J. P. and Hodell, D. A. (1993). Evidence for relative climatic stability of Antarctica during the early Pliocene: a marine perspective. Geografiska Annaler, 75, 204–220.Google Scholar
Keys, J. R. (1979). Saline discharge at the terminus of the Taylor Glacier. Antarctic Journal of the United States, 14, 82–85.Google Scholar
Keys, J. R. and Williams, K. (1981). Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica etCosmochimica Acta, 45, 2299–2309.Google Scholar
Knittel, K., Kuever, J., Meyerdierks, A., et al. (2005). Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. International Journal of Systematic and Evolutionary Microbiology, 55, 781–786.CrossRefGoogle ScholarPubMed
Laybourn-Parry, J., James, M. R., McKnight, D. M., et al. (1996). The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994. Polar Biology, 17, 54–61.CrossRefGoogle Scholar
Love, F. G., Simmons, Jr., G. M., Parker, B. C., Wharton, Jr., R. A., and Seaburg, K. G. (1983). Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiology, 3, 33–48.CrossRefGoogle Scholar
Lyons, W. B., Tyler, S. W., Wharton, Jr., R. A., McKnight, D. M., and Vaughn, B. H. (1998). A Late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 247–256.CrossRefGoogle Scholar
Lyons, W. B., Frape, S. K., and Welch, K. A. (1999). History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data. Geology, 27, 527–530.2.3.CO;2>CrossRefGoogle Scholar
Lyons, W. B., Fountain, A., Doran, P., et al. (2000). Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355–367.CrossRefGoogle Scholar
Lyons, W. B., Welch, K. A., Snyder, G., et al. (2005). Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: clues to the origin of solutes and lake evolution. Geochimica et Cosmochimica Acta, 69, 305–323.CrossRefGoogle Scholar
Lyons, W. B., Laybourn-Parry, J.,Welch, K. A., and Priscu, J. C. (2006). Antarctic lake systems and climate change. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M., Convey, P., and Huiskes, A. H. L.. Dordrecht: Springer, pp. 273–295.CrossRefGoogle Scholar
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1574–1577.CrossRefGoogle ScholarPubMed
Marchant, D. R., Swisher, III, C. C., Lux, D. R., West, Jr., D. P., and Denton, G. H. (1993). Pliocene paleoclimate and East Antarctic Ice Sheet history from surficial ash deposits. Science, 260, 667–670.CrossRefGoogle Scholar
Marion, G. M. (1997). A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land. Antarctic Science, 9, 92–99.CrossRefGoogle Scholar
Matsubaya, O., Sakai, H., Torii, T., Burton, H., and Kerry, K. (1977). Antarctic saline lakes – stable isotope ratios, chemical compositions, and evolution. Geochimica etCosmochimica Acta, 43, 7–25.CrossRefGoogle Scholar
McKnight, D. M., Alger, A., Takte, C. M., Shupe, G., and Spaulding, S. (1998). Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 153–188.Google Scholar
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985–995.CrossRefGoogle Scholar
Meyer, G. H., Morrow, M. B., Wyss, O., Berg, T. E., and Littlepage, J. L. (1962). Antarctica: the microbiology of an unfrozen saline pond. Science, 138, 1103–1104.CrossRefGoogle ScholarPubMed
Mikucki, J. A. and Priscu, J. C. (2007). Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied Environmental Microbiology, 73, 4029–4039.CrossRefGoogle ScholarPubMed
Mikucki, J. A., Foreman, C. M., Sattler, B., Lyons, W. B., and Priscu, J. C. (2004). Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochemistry, 10, 199–220.CrossRefGoogle Scholar
Moorhead, D. L. (2007). Mesoscale dynamics of ephemeral wetlands in the Antarctic Dry Valleys: implications to production and distribution of organic matter. Ecosystems, 10, 87–95.CrossRefGoogle Scholar
Moorhead, D. L., Doran, P. T., Fountain, A. G., et al. (1999). Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. BioScience, 49(12), 1009–1019.CrossRefGoogle Scholar
Moorhead, D. L., Barrett, J. E., Virginia, R. A., et al. (2003). Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 567–576.CrossRefGoogle Scholar
Moorhead, D. L., Schmeling, J., and Hawes, I. (2005). Modelling the contribution of benthic microbial mats to net primary production in Lake Hoare, McMurdo Dry Valleys. Antarctic Science, 17, 33–45.CrossRefGoogle Scholar
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., and Huner, N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70, 222–252.CrossRefGoogle ScholarPubMed
Mosier, A. C., Murray, A. E., and Fritsen, C. H. (2006). Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiology Ecology, 59, 274–288.CrossRefGoogle ScholarPubMed
Mustard, J. F, Murchie, S. L., Pelkey, S. M., et al. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 305–309.CrossRefGoogle ScholarPubMed
Neumann, K., Lyons, W. B., Priscu, J. C., Des Marais, D., and Welch, K. A. (2004). The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Annals of Glaciology, 39, 518–524.CrossRefGoogle Scholar
Newsome, H. E., Brittelle, G. E., Hibbitts, C. A., Crossey, L. J., and Kudo, A. M. (1996). Impact crater lakes on Mars. Journal of Geophysical Research, 101, 951–955.Google Scholar
Olson, J. B., Steppe, T. F., Litaker, R. W., Paerl, H. W. (1998). N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36, 231–238.CrossRefGoogle ScholarPubMed
Oren, A. (1992). Ecology of extremely halophilic microorganisms. In The Biology of Halophilic Bacteria, ed. Vreeland, R. H. and Hochstein, L. I.. Boca Raton, FL: CRC Press, pp. 25–54.Google Scholar
Paerl, H. W. and Priscu, J. C. (1998). Microbial phototrophic, heterotrophic and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36, 221–230.CrossRefGoogle ScholarPubMed
Paerl, H. W., Pinckney, J. L., and Steppe, T. F. (2000). Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.CrossRefGoogle ScholarPubMed
Parker, B. C., Simmons, Jr., G. M., Love, F. G., Wharton, Jr., R. A., and Seaburg, K. G. (1981). Modern stromatolites in Antarctic Dry Valley lakes. BioScience, 31, 656–661.CrossRefGoogle Scholar
Poreda, R. J., Hunt, A. G., Lyons, W. B., and Welch, K. A. (2004). The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica. Aquatic Geochemistry, 10, 353–371.CrossRefGoogle Scholar
Priscu, J. C. (1995). Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biology, 34, 215–227.CrossRefGoogle Scholar
Priscu, J. C., Priscu, L. R., Vincent, W. F., and Howard-Williams, C. (1987). Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnology and Oceanography, 32, 260–270.CrossRefGoogle Scholar
Priscu, J. P., Fritsen, C. H., Adams, E. E., et al. (1998). Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 2095–2098.CrossRefGoogle Scholar
Priscu, J. C., Wolf, C. F., Takacs, C. D., et al. (1999). Carbon transformations in a perennially ice-covered Antarctic lake. BioScience, 49(12), 997–1008.CrossRefGoogle Scholar
Pugh, H. E., Welch, K. A., Lyons, W. B., Priscu, J. C., and McKnight, D. (2003). Biochemistry of Si in the McMurdo Dry Valley lakes, Antarctica. International Journal of Astrobiology, 1, 737–749.Google Scholar
Quesada, A. and Vincent, W. F. (1993). Adaptation of cyanobacteria to the light regime within Antarctic microbial mats. Verhangen International Verein Limnology, 25, 960–965.Google Scholar
Quesada, A., Vincent, W. F., and Lean, D. R. S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV absorbing compounds. FEMS Microbiology Ecology, 28, 315–323.CrossRefGoogle Scholar
Rautio, M. and Vincent, W. F. (2006). Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology, 51, 1038–1052.CrossRefGoogle Scholar
Roberts, E. C. and Laybourn-Parry, J. (1999). Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshwater Biology, 41, 737–749.CrossRefGoogle Scholar
Robinson, P. H. (1984). Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica. Journal of Glaciology, 30, 153–159.CrossRefGoogle Scholar
Sattley, W. M. and Madigan, M. T. (2006). Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Applied Environmental Microbiology, 72, 5562–5568.CrossRefGoogle ScholarPubMed
Scott, D. H., Rice, J. W., and Dohm, J. M. (1991). Paleolakes and lacustrine basins on Mars. Lunar and Planetary Science, 22, Abstract 1203–1204. Lunar and Planetary Institute, Houston.Google Scholar
Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J., and LaRock, P. (1979). Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, 280, 828–829.CrossRefGoogle Scholar
Singh, N., Kendall, M. M., Liu, Y., and Boone, D. R. (2005). Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska, description of Methanococcoides alaskense sp. nov., and emendation of Methanosarcina baltica. International Journal of Systematic and Evolutionary Microbiology, 55, 2531–2538.CrossRefGoogle Scholar
Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. M., and Lanoil, B. D. (2005). Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Applied and Environmental Microbiology, 71, 6986–6997.CrossRefGoogle ScholarPubMed
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al. (2005). New perspectives on ancient Mars. Science, 307, 1214–1220.CrossRefGoogle ScholarPubMed
Spaulding, S. A., McKnight, D. M., Smith, R. L., and Dufford, R. (1994). Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. Journal of Plankton Research, 16, 527–541.CrossRefGoogle Scholar
Spigel, R. H. and Priscu, J. C. (1998). Physical limnology of the McMurdo Dry Valley lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 153–188.Google Scholar
Squyres, S. W., Anderson, D. W., Nedell, S. S., and Wharton, Jr., R. A. (1991). Lake Hoare, Antarctica, sedimentation through a thick perennial ice cover. Sedimentology, 38, 363–379.CrossRefGoogle ScholarPubMed
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al. (2006). Two years at Meridiani Planum: results from the Opportunity Rover. Science, 313, 1403–1407.CrossRefGoogle ScholarPubMed
Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. Tansley Review 84. New Phytologist, 131, 1–32.CrossRefGoogle Scholar
Sumner, D. Y. (1997). Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gemohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297, 455–487.CrossRefGoogle Scholar
Sumner, D. Y. (2000). Microbial versus environmental influences on the morphology of late Archean fenestrate microbialites. In Microbial Sediments, ed. Riding, R. and Awramik, S. M.. Berlin: Springer, pp. 307–314.CrossRefGoogle Scholar
Takacs, C. D. and Priscu, J. C. (1998). Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microbial Ecology, 36, 239–250.CrossRefGoogle ScholarPubMed
Takacs, C. D., Priscu, J. C., and McKnight, D. M. (2001). Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography, 46(5), 1189–1194.CrossRefGoogle Scholar
Timperley, M. H. (1997). A simple temperature-based model for the chemistry of melt-water ponds in the Darwin Glacier area, 80° S. In Ecosystem Processes in Antarctic Ice-Free Regions, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: AA Balkema, pp. 221–230.Google Scholar
Tomiyama, C. and Kitano, Y. (1985). Salt origin in the Wright Valley, Antarctica. Antarctic Record, 86, 17–27.Google Scholar
Torii, T., Nakaya, S., Matsubaya, O., et al. (1989). Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica. Hydrobiology, 172, 255–264.CrossRefGoogle Scholar
Tosca, N. J., Knoll, A. H., and McLennan, S. M. (2008). Water activity and the challenge for life on early Mars. Science, 320, 1204–1207.CrossRefGoogle ScholarPubMed
Tranter, M., Skidmore, M., and Wadham, J. L. (2005). Hydrological controls on microbial communities in subglacial environments. Hydrological Processes, 19, 995–998.CrossRefGoogle Scholar
Tyler, S. W., Cook, P. G., Butt, A. Z., et al. (1998). Evidence of deep circulation in two perennially ice-covered Antarctic lakes. Limnology and Oceanography, 43, 625–635.CrossRefGoogle Scholar
Wielen, P. W. J. J. (2006). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin Discovery. FEMS Microbiology Letters, 259, 326–331.CrossRefGoogle ScholarPubMed
Wielen, P. W. J. J., Bolhuis, H., Borin, S., and the BioDeep Scientific Party (2005). The enigma of prokaryotic life in deep hypersaline anoxic basins. Science, 307, 121–123.CrossRefGoogle ScholarPubMed
Ventosa, A., Nieto, J. J., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62, 504–544.Google ScholarPubMed
Vincent, W. F. (1988). Microbial Ecosystems of Antarctica. Cambridge, UK: Cambridge University Press.Google Scholar
Vincent, W. F. (2000). Cyanobacterial dominance in the polar regions. In Ecology of the Cyanobacteria: Their Diversity in Space and Time, ed. Whitton, B. and Potts, M.. Dordrecht, Netherlands: Kluwers Academic Press, pp. 321–340.Google Scholar
Vincent, W. F. and Quesada, A. (1994). Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In Ultraviolet Radiation in the Antarctic Environment: Measurements and Biological Effects, ed. Weiler, S. and Penhale, P.. Washington, D.C.: American Geophysical Union, pp. 111–124.CrossRefGoogle Scholar
Vincent, W. F., Downes, M. T., Castenholz, R. W., and Howard-Williams, C. (1993). Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. European Journal of Phycology, 28, 213–221.CrossRefGoogle Scholar
Wagner, B., Melles, M., Doran, P., et al. (2006). Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 241, 320–337.CrossRefGoogle Scholar
Ward, B. B. and Priscu, J. C. (1997). Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiology, 347, 57–68.CrossRefGoogle Scholar
Webster, J. G., Brown, K. L., and Vincent, W. F. (1994). Geochemical processes affecting meltwater chemistry and the formation of saline ponds in the Victoria Valley and Bull Pass Region, Antarctica. Hydrobiology, 281, 171–186.CrossRefGoogle Scholar
Welch, K. A., Lyons, W. B., McKnight, D., et al. (2000). Climate and hydrologic variations and implications for lake and stream ecological response in the McMurdo Dry Valleys, Antarctica. In Climate Variability and Ecosystem Response at Long Term Ecological Research Sites, ed. Greenland, D., Goodin, D. G., and Smith, R. C.. Oxford, UK: Oxford University Press, pp. 174–195.Google Scholar
Wharton, Jr., R. A. (1994). Stromatolitic mats in Antarctic lakes. In Phanerozoic Stromatolites, Vol. II, ed. Bertrand-Sarfati, J. and Monty, C.. Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 53–70.CrossRefGoogle Scholar
Wharton, Jr., R. A., Parker, B. C., and Simmons, Jr., G. M. (1983). Distribution, species composition, and morphology of algal mats in Antarctic dry valley lakes. Phycologia, 22, 355–365.CrossRefGoogle Scholar
Wharton, Jr., R. A., Lyons, W. B., and Des Marais, D. (1993a). Stable isotope biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chemical Geology, 107, 159–172.CrossRefGoogle Scholar
Wharton, Jr., R. A., McKay, C. P., Clow, G. D. and Andersen, D. T. (1993b). Perennial ice covers and their influence on Antarctic lake ecosystems. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 53–70.CrossRefGoogle Scholar
Wharton, Jr., R. A., Crosby, J. M., McKay, C. P., and Rice, J. W. (1995). Paleolakes on Mars. Journal of Paleolimnology, 13, 267–283.CrossRefGoogle ScholarPubMed
Wilson, A. T. (1964). Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1,200 years ago. Nature, 201, 176–177.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×