Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2010
  • Online publication date: July 2010

6 - Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments

Summary

Introduction

On the basis of the prevalence of cold environments in our solar system, the search for extraterrestrial life is focused largely on icy habitats. The McMurdo Dry Valleys (MDV) area is a polar desert with a mean annual temperature below freezing and extremely low humidity (Wharton et al.,1995) and thus offers a suitable earthly analog to our nearest exobiological candidate, Mars. Water is thought to have been abundant on Mars early in its geological history (Solomon et al., 2005; Squyres et al., 2006; Head and Marchant, this volume, Chapter 2) and perhaps may even have flowed across the surface more recently (Hauber et al., 2005; Head et al., 2005; Malin et al., 2006). Life as we know it requires the presence of liquid water to mediate biochemical reactions for energy as well as a reasonably stable environment in which to grow; therefore the search for extraterrestrial life has been largely a search for environments where liquid water can be maintained for some duration (e.g., Carr, 1983).

There is significant geomorphological evidence, and mounting physical evidence supporting the presence of paleolakes on ancient Mars (Squyres et al., 2006). This intrigues exobiologists because paleolakes would provide a suitable habitat for early martian life forms (Carr, 1983; Wharton et al., 1995; Doran et al., 2004). Lakes on the martian surface would have become progressively colder over geological time, developing seasonal and eventually perennial ice covers (Carr, 1983).

References
Aiken, G., McKnight, D., Harnish, R., and Wershaw, R. (1996). Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry, 34, 157–188.
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991). Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589–594.
Barrett, P. J. and Hambrey, M. J. (1992). Plio-Pleistocene sedimentation in Ferrar Fiord, Antarctica. Sedimentology, 39, 109–123.
Black, R. F., Jackson, M. L., and Berg, T. E. (1965). Saline discharge from Taylor Glacier, Victoria Land, Antarctica. Journal of Geology, 74, 175–181.
Bomblies, A., McKnight, D., and Andrews, E. D. (2001). Retrospective simulation of lake level rise in Lake Bonney based on recent 21-year record: indication of recent climate change in the McMurdo Dry Valleys, Antarctica. Journal of Paleolimnology, 25, 477–492.
Bratina, B. J., Stevenson, B. S., Green, W. J., and Schmidt, T. M. (1998). Manganese reduction by microbes from oxic regions of Lake Vanda (Antarctica) water column. Applied and Environmental Microbiology, 64, 3791–3797.
Burkins, M. B., Virginia, R. A., Chamberlain, C. P., and Wall, D. H. (2000). Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology, 81, 2377–2391.
Burt, D. M. and Knauth, L. P. (2003). Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. Journal of Geophysical Research, 108, 1–6.
Cabrol, N. A. and Grin, E. A. (1999). Distribution, classification, and ages of Martian impact crater lakes. Icarus, V142, 160–172.
Cabrol, N. A. and Grin, E. A. (2001). The evolution of lacustrine environments on Mars: is Mars only hydrologically dormant?Icarus, V149, 291–328.
Cabrol, N. A. and Grin, E. A. (2005). Ancient and Recent lakes on Mars. In Water on Mars and Life: Advances in Astrobiology and Biogeophysics, ed. Tokano, T.. Berlin: Springer Verlag, pp. 235–259.
Calkin, P. E. and Bull, C. (1967). Lake Vida, Victoria Valley, Antarctica. Journal of Glaciology, 6, 833–836.
Canfield, D. E. and Green, W. J. (1985). The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochemistry, 1, 233–256.
Carlson, C. A., Phillips, F. M., Elmore, D., and Bentley, H. W. (1990). Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. Geochimica et Cosmochimica Acta, 54, 311–318.
Carr, M. H. (1983). Stability of streams and lakes on Mars. Icarus, 56, 476–495.
Cartwright, K. and Harris, H. J. H. (1981). Hydrogeology of the Dry Valley region, Antarctica. Antarctic Research Series, 33, 193–214.
Chinn, T. J. (1993). Physical hydrology of the dry valley lakes. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J., and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 1–52.
Clocksin, K. M., Jung, D. O., and Madigan, M. T. (2007). Cold-active chemoorganotrophic bacteria from permanently ice-covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 73, 3077–3083.
Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G., and House, H. R. (1998). Hydrologic processes influencing streamflow variation in Fryxell Basin, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 93–108.
Davey, M. C. (1989). The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biology, 10, 29–36.
Denton, G. H., Sugden, D. E., Marchant, D. R., Hall, B. L., and Wilch, T. I. (1993). East Antarctic Ice Sheet sensitivity to Pliocene climatic change from a Dry Valleys perspective. Geografiska Annaler, 75A, 155–204.
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2002). Recent climate cooling and ecosystem response in the McMurdo Dry Valleys, Antarctica. Nature, 415, 517–520.
Doran, P. T., Fritsen, C. H., McKay, C. P., Priscu, J. C., and Adams, E. E. (2003). Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake. PNAS, 100, 26–31.
Doran, P. T., Priscu, J. C., Lyons, W. B., et al. (2004). Paleolimnnology of extreme cold terrestrial and extraterrestrial environments. In Long-Term Environmental Change in Arctic and Antarctic Lakes, ed. Pienitz, R., Douglas, M. S. V., and Smoll, J. P.. Amsterdam, Netherlands: Kluwer Academic Publishers, pp. 475–507.
Fassett, C. I. and Head, III, J. W. (2008). Open-basin lakes on Mars: implications of valley network lakes for the nature of Noachian hydrology. Lunar and Planetary Science, 39, Abstract 1139.
Fernández-Valiente, E., Quesada, A., Howard-Williams, C., and Hawes, I. (2001). N2-fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecology, 42, 338–349.
Fishbaugh, K., Poulet, F., Langevin, Y., Chevrier, V., and Bibring, J.-P. (2007). On the origin of gypsum in the Mars North Polar Region. Journal of Geophysical Research, 112(E07002), doi: 10.1029/2006JE002862.
Foreman, C. M., Wolf, C. F., and Priscu, J. C. (2004). Impact of episodic warming events on the physical, chemical, and biological relationships of lakes in the McMurdo Dry Valleys, Antarctica. Aquatic Geochemistry, 10, 239–268.
Fountain, A. G., Lyons, W. B., Burkins, M. B., et al. (1999). Physical controls on the Taylor Valley ecosystem, Antarctica. BioScience, 4, 961–973.
Fritsen, C. H. and Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.
Fritsen, C. H., Adams, E. E., McKay, C. P., and Priscu, J. C. (1998). Permanent ice covers of the McMurdo Dry Valleys Lakes, Antarctica: liquid water contents. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 269–280.
Glatz, R. E., Lepp, P. W., Ward, B. B., and Francis, C. A. (2006). Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology, 4, 53–67.
Goldspiel, J. M. and Squyres, S. W. (1991). Ancient aqueous sedimentation on Mars. Icarus, 89, 392–410.
Gorden, D. A., Priscu, J. C., and Giovannoni, S. (2000). Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microbial Ecology, 39, 197–202.
Grant, W. D. (2004). Life at low water activity. Philosophical Transactions of the Royal Society of London, Series B, 359, 1249–1267.
Green, W. J. and Canfield, D. E. (1984). Geochemistry of the Onyx River (Wright Valley, Antarctica) and its role in the chemical evolution of Lake Vanda. Geochimica et Cosmochimica Acta, 48, 2457–2468.
Green, W. J., Anglem, P., and Chavek, E. (1988). The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo Dry Valleys. Geochimica et Cosmochimica Acta, 52, 1265–1274.
Green, W. J., Canfield, D. E., Shengsong, Y., et al. (1993). Metal transport and release processes in Lake Vanda: the role of oxide phases. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 145–163.
Green, W. J., Canfield, D. E., and Nixon, P. (1998). Cobalt cycling and fate in Lake Vanda. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 205–215.
,Group, MSR–SA (2006). Findings of the Mars Special Regions Science Analysis Group. Astrobiology, 6, 677–732.
Hage, M. M., Uhle, M. E., and Macko, S. (2007). Biomarker and stable isotope characterization of coastal pond-derived organic matter, McMurdo Dry Valleys, Antarctica. Astrobiology, 7, 645–661.
Hall, B. L. and Denton, G. H. (2000). Radiocarbon chronology of Ross Sea Drift, Eastern Taylor Valley, Antarctica: evidence for a grounded ice sheet in the Ross Sea at the last glacial maximum. Geografiska Annaler, 82, 305–336.
Hall, B. L., Denton, G. H., and Hendy, C. H. (2000). Evidence from Taylor Valley for a grounded ice sheet in the Ross Sea, Antarctica. Geografiska Annaler, 82, 275–303.
Hallsworth, J. E., Yakimov, M. M., Golyshin, P. N., et al. (2007). Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environmental Microbiology, 9, 801–803.
Harris, H. J. H. and Cartright, , K. (1981). Hydrology of the Don Juan basin, Wright Valley, Antarctica. Antarctic Research Series, 33, 161–184.
Hauber, E., Gasselt, S., Ivanov, B., et al. (2005). Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 434, 356–361.
Hawes, I. (1990). Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 29, 326–331.
Hawes, I. and Howard-Williams, C. (1998). Primary production processes in streams of the McMurdo Dry Valleys, Antarctica. Antarctic Research Series, 72, 129–140.
Hawes, I. and Schwarz, A. M. (1999). Photosynthesis in an extreme shade environment, benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. Journal of Phycology, 35, 448–459.
Hawes, I., Howard-Williams, C., and Vincent, W. F. (1992). Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biology, 12, 587–594.
Hawes, I., Howard-Williams, C., and Pridmore, R. D. (1993). Environmental controls on microbial biomass in the ponds of the McMurdo Ice Shelf, Antarctica. Archive fur Hydrobiologie, 127, 271–287.
Hawes, I., Smith, R., Howard-Williams, C., and Schwarz, A. M. (1999). Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarctic Science, 11, 198–208.
Hawes, I., Moorhead, D. L., Sutherland, D., Schmeling, J., and Schwarz, A. M. (2001). Benthic primary production in two perennially ice-covered Antarctic lakes, patterns of biomass accumulation with a model of community metabolism. Antarctic Science, 13, 18–27.
Head, J. W., Neukum, G., Jaumann, R., et al. (2005). Tropical to mid-latitude snow and ice accumulation, flow, and glaciation on Mars. Nature, 434, 346–351.
Healy, M., Webster-Brown, J. G., Brown, K. L., and Lane, V. (2006). Chemistry and stratification of Antarctic meltwater ponds. II. Inland ponds in the McMurdo Dry Valleys, Victoria Land. Antarctic Science, 18, 525–533.
Hendy, C. H. (2000). Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler, 82, 411–432.
Hendy, C. H., Wilson, A. T., Popplewell, K. B., and House, D. A. (1977). Dating of geochemical events in Lake Bonney, Antarctica and their relation to glacial and climatic changes. New Zealand Journal of Geology and Geophysics, 20, 1103–1122.
Holmes, D. E., Nicoll, J. S., Bond, D. R., and Lovley, D. R. (2004). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied Environmental Microbiology, 70, 6023–6030.
Hood, E. M., Howes, B. L., and Jenkins, W. J. (1998). Dissolved gas dynamics in perennially ice-covered Lake Fryxell, Antarctica. Limnology and Oceanography, 43, 265–272.
Horowitz, N. H., Cameron, R. E., and Hubbard, J. S. (1972). Microbiology of the Dry Valleys of Antarctica. Science, 176, 242–245.
Howard-Williams, C. and Hawes, I. (2007). Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarctic Science, 19, 205–217.
Howard-Williams, C., Schwarz, A. M., Hawes, I., and Priscu, J. C. (1998). Optical properties of lakes of the McMurdo Dry Valley region, Antarctica. In The McMurdo Dry Valleys, Antarctica: A Cold Desert Ecosystem, ed. Priscu, J. C.. Washington, D.C.: American Geophysical Union, pp. 189–203.
Hubbard, A., Lawson, W., Anderson, B., Hubbard, B., and Blatter, H. (2004). Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Annals of Glaciology, 39, 79–84.
Jakosky, B. M., Amend, J. P.,Berelson, W. M., et al. (2007). An Astrobiology Strategy for the Exploration of Mars. Report by Space Studies Board, National Research Council. Washington, D.C.: National Academies Press.
Karr, E. A., Sattley, W. M., Jung, D. O., et al. (2003). Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Applied Environmental Microbiology, 69, 4910–4914.
Karr, E. A., Sattley, W. M., Rice, M. R., et al. (2005). Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 71, 6353–6359.
Kaye, J. Z. and Baross, J. A. (2000). High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiology Ecology, 32, 249–260.
Kennett, J. P. and Hodell, D. A. (1993). Evidence for relative climatic stability of Antarctica during the early Pliocene: a marine perspective. Geografiska Annaler, 75, 204–220.
Keys, J. R. (1979). Saline discharge at the terminus of the Taylor Glacier. Antarctic Journal of the United States, 14, 82–85.
Keys, J. R. and Williams, K. (1981). Origin of crystalline, cold desert salts in the McMurdo region, Antarctica. Geochimica etCosmochimica Acta, 45, 2299–2309.
Knittel, K., Kuever, J., Meyerdierks, A., et al. (2005). Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. International Journal of Systematic and Evolutionary Microbiology, 55, 781–786.
Laybourn-Parry, J., James, M. R., McKnight, D. M., et al. (1996). The microbial plankton of Lake Fryxell, southern Victoria Land, Antarctica during the summers of 1992 and 1994. Polar Biology, 17, 54–61.
Love, F. G., Simmons, Jr., G. M., Parker, B. C., Wharton, Jr., R. A., and Seaburg, K. G. (1983). Modern conophyton-like microbial mats discovered in Lake Vanda, Antarctica. Geomicrobiology, 3, 33–48.
Lyons, W. B., Tyler, S. W., Wharton, Jr., R. A., McKnight, D. M., and Vaughn, B. H. (1998). A Late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Science, 10, 247–256.
Lyons, W. B., Frape, S. K., and Welch, K. A. (1999). History of McMurdo Dry Valley lakes, Antarctica, from stable chlorine isotope data. Geology, 27, 527–530.
Lyons, W. B., Fountain, A., Doran, P., et al. (2000). Importance of landscape position and legacy: the evolution of the lakes in Taylor Valley, Antarctica. Freshwater Biology, 43, 355–367.
Lyons, W. B., Welch, K. A., Snyder, G., et al. (2005). Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: clues to the origin of solutes and lake evolution. Geochimica et Cosmochimica Acta, 69, 305–323.
Lyons, W. B., Laybourn-Parry, J.,Welch, K. A., and Priscu, J. C. (2006). Antarctic lake systems and climate change. In Trends in Antarctic Terrestrial and Limnetic Ecosystems: Antarctica as a Global Indicator, ed. Bergstrom, D. M., Convey, P., and Huiskes, A. H. L.. Dordrecht: Springer, pp. 273–295.
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Dobrea, E. Z. N. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1574–1577.
Marchant, D. R., Swisher, III, C. C., Lux, D. R., West, Jr., D. P., and Denton, G. H. (1993). Pliocene paleoclimate and East Antarctic Ice Sheet history from surficial ash deposits. Science, 260, 667–670.
Marion, G. M. (1997). A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land. Antarctic Science, 9, 92–99.
Matsubaya, O., Sakai, H., Torii, T., Burton, H., and Kerry, K. (1977). Antarctic saline lakes – stable isotope ratios, chemical compositions, and evolution. Geochimica etCosmochimica Acta, 43, 7–25.
McKnight, D. M., Alger, A., Takte, C. M., Shupe, G., and Spaulding, S. (1998). Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, Southern Victoria Land, Antarctica. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 153–188.
McKnight, D. M., Niyogi, D. K., Alger, A. S., et al. (1999). Dry valley streams in Antarctica: ecosystems waiting for water. BioScience, 49, 985–995.
Meyer, G. H., Morrow, M. B., Wyss, O., Berg, T. E., and Littlepage, J. L. (1962). Antarctica: the microbiology of an unfrozen saline pond. Science, 138, 1103–1104.
Mikucki, J. A. and Priscu, J. C. (2007). Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier, Antarctica. Applied Environmental Microbiology, 73, 4029–4039.
Mikucki, J. A., Foreman, C. M., Sattler, B., Lyons, W. B., and Priscu, J. C. (2004). Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquatic Geochemistry, 10, 199–220.
Moorhead, D. L. (2007). Mesoscale dynamics of ephemeral wetlands in the Antarctic Dry Valleys: implications to production and distribution of organic matter. Ecosystems, 10, 87–95.
Moorhead, D. L., Doran, P. T., Fountain, A. G., et al. (1999). Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. BioScience, 49(12), 1009–1019.
Moorhead, D. L., Barrett, J. E., Virginia, R. A., et al. (2003). Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 567–576.
Moorhead, D. L., Schmeling, J., and Hawes, I. (2005). Modelling the contribution of benthic microbial mats to net primary production in Lake Hoare, McMurdo Dry Valleys. Antarctic Science, 17, 33–45.
Morgan-Kiss, R. M., Priscu, J. C., Pocock, T., Gudynaite-Savitch, L., and Huner, N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiology and Molecular Biology Reviews, 70, 222–252.
Mosier, A. C., Murray, A. E., and Fritsen, C. H. (2006). Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiology Ecology, 59, 274–288.
Mustard, J. F, Murchie, S. L., Pelkey, S. M., et al. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454, 305–309.
Neumann, K., Lyons, W. B., Priscu, J. C., Des Marais, D., and Welch, K. A. (2004). The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Annals of Glaciology, 39, 518–524.
Newsome, H. E., Brittelle, G. E., Hibbitts, C. A., Crossey, L. J., and Kudo, A. M. (1996). Impact crater lakes on Mars. Journal of Geophysical Research, 101, 951–955.
Olson, J. B., Steppe, T. F., Litaker, R. W., Paerl, H. W. (1998). N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36, 231–238.
Oren, A. (1992). Ecology of extremely halophilic microorganisms. In The Biology of Halophilic Bacteria, ed. Vreeland, R. H. and Hochstein, L. I.. Boca Raton, FL: CRC Press, pp. 25–54.
Paerl, H. W. and Priscu, J. C. (1998). Microbial phototrophic, heterotrophic and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36, 221–230.
Paerl, H. W., Pinckney, J. L., and Steppe, T. F. (2000). Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.
Parker, B. C., Simmons, Jr., G. M., Love, F. G., Wharton, Jr., R. A., and Seaburg, K. G. (1981). Modern stromatolites in Antarctic Dry Valley lakes. BioScience, 31, 656–661.
Poreda, R. J., Hunt, A. G., Lyons, W. B., and Welch, K. A. (2004). The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica. Aquatic Geochemistry, 10, 353–371.
Priscu, J. C. (1995). Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica. Freshwater Biology, 34, 215–227.
Priscu, J. C., Priscu, L. R., Vincent, W. F., and Howard-Williams, C. (1987). Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnology and Oceanography, 32, 260–270.
Priscu, J. P., Fritsen, C. H., Adams, E. E., et al. (1998). Perennial Antarctic lake ice: an oasis for life in a polar desert. Science, 280, 2095–2098.
Priscu, J. C., Wolf, C. F., Takacs, C. D., et al. (1999). Carbon transformations in a perennially ice-covered Antarctic lake. BioScience, 49(12), 997–1008.
Pugh, H. E., Welch, K. A., Lyons, W. B., Priscu, J. C., and McKnight, D. (2003). Biochemistry of Si in the McMurdo Dry Valley lakes, Antarctica. International Journal of Astrobiology, 1, 737–749.
Quesada, A. and Vincent, W. F. (1993). Adaptation of cyanobacteria to the light regime within Antarctic microbial mats. Verhangen International Verein Limnology, 25, 960–965.
Quesada, A., Vincent, W. F., and Lean, D. R. S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV absorbing compounds. FEMS Microbiology Ecology, 28, 315–323.
Rautio, M. and Vincent, W. F. (2006). Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshwater Biology, 51, 1038–1052.
Roberts, E. C. and Laybourn-Parry, J. (1999). Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshwater Biology, 41, 737–749.
Robinson, P. H. (1984). Ice dynamics and thermal regime of Taylor Glacier, South Victoria Land, Antarctica. Journal of Glaciology, 30, 153–159.
Sattley, W. M. and Madigan, M. T. (2006). Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Applied Environmental Microbiology, 72, 5562–5568.
Scott, D. H., Rice, J. W., and Dohm, J. M. (1991). Paleolakes and lacustrine basins on Mars. Lunar and Planetary Science, 22, Abstract 1203–1204. Lunar and Planetary Institute, Houston.
Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J., and LaRock, P. (1979). Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, 280, 828–829.
Singh, N., Kendall, M. M., Liu, Y., and Boone, D. R. (2005). Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska, description of Methanococcoides alaskense sp. nov., and emendation of Methanosarcina baltica. International Journal of Systematic and Evolutionary Microbiology, 55, 2531–2538.
Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. M., and Lanoil, B. D. (2005). Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Applied and Environmental Microbiology, 71, 6986–6997.
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al. (2005). New perspectives on ancient Mars. Science, 307, 1214–1220.
Spaulding, S. A., McKnight, D. M., Smith, R. L., and Dufford, R. (1994). Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. Journal of Plankton Research, 16, 527–541.
Spigel, R. H. and Priscu, J. C. (1998). Physical limnology of the McMurdo Dry Valley lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica, ed. Priscu, J. C.. Antarctic Research Series 72. Washington, D.C.: American Geophysical Union, pp. 153–188.
Squyres, S. W., Anderson, D. W., Nedell, S. S., and Wharton, Jr., R. A. (1991). Lake Hoare, Antarctica, sedimentation through a thick perennial ice cover. Sedimentology, 38, 363–379.
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al. (2006). Two years at Meridiani Planum: results from the Opportunity Rover. Science, 313, 1403–1407.
Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. Tansley Review 84. New Phytologist, 131, 1–32.
Sumner, D. Y. (1997). Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gemohaan and Frisco formations, Transvaal Supergroup, South Africa. American Journal of Science, 297, 455–487.
Sumner, D. Y. (2000). Microbial versus environmental influences on the morphology of late Archean fenestrate microbialites. In Microbial Sediments, ed. Riding, R. and Awramik, S. M.. Berlin: Springer, pp. 307–314.
Takacs, C. D. and Priscu, J. C. (1998). Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: production and biomass loss over four seasons. Microbial Ecology, 36, 239–250.
Takacs, C. D., Priscu, J. C., and McKnight, D. M. (2001). Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnology and Oceanography, 46(5), 1189–1194.
Timperley, M. H. (1997). A simple temperature-based model for the chemistry of melt-water ponds in the Darwin Glacier area, 80° S. In Ecosystem Processes in Antarctic Ice-Free Regions, ed. Lyons, W. B., Howard-Williams, C., and Hawes, I.. Rotterdam, Netherlands: AA Balkema, pp. 221–230.
Tomiyama, C. and Kitano, Y. (1985). Salt origin in the Wright Valley, Antarctica. Antarctic Record, 86, 17–27.
Torii, T., Nakaya, S., Matsubaya, O., et al. (1989). Chemical characteristics of pond waters in the Labyrinth of southern Victoria Land, Antarctica. Hydrobiology, 172, 255–264.
Tosca, N. J., Knoll, A. H., and McLennan, S. M. (2008). Water activity and the challenge for life on early Mars. Science, 320, 1204–1207.
Tranter, M., Skidmore, M., and Wadham, J. L. (2005). Hydrological controls on microbial communities in subglacial environments. Hydrological Processes, 19, 995–998.
Tyler, S. W., Cook, P. G., Butt, A. Z., et al. (1998). Evidence of deep circulation in two perennially ice-covered Antarctic lakes. Limnology and Oceanography, 43, 625–635.
Wielen, P. W. J. J. (2006). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin Discovery. FEMS Microbiology Letters, 259, 326–331.
Wielen, P. W. J. J., Bolhuis, H., Borin, S., and the BioDeep Scientific Party (2005). The enigma of prokaryotic life in deep hypersaline anoxic basins. Science, 307, 121–123.
Ventosa, A., Nieto, J. J., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews, 62, 504–544.
Vincent, W. F. (1988). Microbial Ecosystems of Antarctica. Cambridge, UK: Cambridge University Press.
Vincent, W. F. (2000). Cyanobacterial dominance in the polar regions. In Ecology of the Cyanobacteria: Their Diversity in Space and Time, ed. Whitton, B. and Potts, M.. Dordrecht, Netherlands: Kluwers Academic Press, pp. 321–340.
Vincent, W. F. and Quesada, A. (1994). Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In Ultraviolet Radiation in the Antarctic Environment: Measurements and Biological Effects, ed. Weiler, S. and Penhale, P.. Washington, D.C.: American Geophysical Union, pp. 111–124.
Vincent, W. F., Downes, M. T., Castenholz, R. W., and Howard-Williams, C. (1993). Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. European Journal of Phycology, 28, 213–221.
Wagner, B., Melles, M., Doran, P., et al. (2006). Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 241, 320–337.
Ward, B. B. and Priscu, J. C. (1997). Detection and characterization of denitrifying bacteria from a permanently ice-covered Antarctic lake. Hydrobiology, 347, 57–68.
Webster, J. G., Brown, K. L., and Vincent, W. F. (1994). Geochemical processes affecting meltwater chemistry and the formation of saline ponds in the Victoria Valley and Bull Pass Region, Antarctica. Hydrobiology, 281, 171–186.
Welch, K. A., Lyons, W. B., McKnight, D., et al. (2000). Climate and hydrologic variations and implications for lake and stream ecological response in the McMurdo Dry Valleys, Antarctica. In Climate Variability and Ecosystem Response at Long Term Ecological Research Sites, ed. Greenland, D., Goodin, D. G., and Smith, R. C.. Oxford, UK: Oxford University Press, pp. 174–195.
Wharton, Jr., R. A. (1994). Stromatolitic mats in Antarctic lakes. In Phanerozoic Stromatolites, Vol. II, ed. Bertrand-Sarfati, J. and Monty, C.. Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 53–70.
Wharton, Jr., R. A., Parker, B. C., and Simmons, Jr., G. M. (1983). Distribution, species composition, and morphology of algal mats in Antarctic dry valley lakes. Phycologia, 22, 355–365.
Wharton, Jr., R. A., Lyons, W. B., and Des Marais, D. (1993a). Stable isotope biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chemical Geology, 107, 159–172.
Wharton, Jr., R. A., McKay, C. P., Clow, G. D. and Andersen, D. T. (1993b). Perennial ice covers and their influence on Antarctic lake ecosystems. In Physical and Biogeochemical Processes in Antarctic Lakes, ed. Green, W. J. and Freidmann, E. I.. Washington, D.C.: American Geophysical Union, pp. 53–70.
Wharton, Jr., R. A., Crosby, J. M., McKay, C. P., and Rice, J. W. (1995). Paleolakes on Mars. Journal of Paleolimnology, 13, 267–283.
Wilson, A. T. (1964). Evidence from chemical diffusion of a climatic change in the McMurdo Dry Valleys 1,200 years ago. Nature, 201, 176–177.