Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-07T01:23:00.874Z Has data issue: false hasContentIssue false

6 - Games with Imperfect Information: Theory and Algorithms

Published online by Cambridge University Press:  01 June 2011

Laurent Doyen
Affiliation:
CNRS & ENS Cachan
Jean-François Raskin
Affiliation:
Université Libre de Bruxelles
Krzysztof R. Apt
Affiliation:
Universiteit van Amsterdam
Erich Grädel
Affiliation:
Rheinisch-Westfälische Technische Hochschule, Aachen, Germany
Get access

Summary

Abstract

We study observation-based strategies for two-player turn-based games played on graphs with parity objectives. An observation-based strategy relies on imperfect information about the history of a play, namely, on the past sequence of observations. Such games occur in the synthesis of a controller that does not see the private state of the plant. Our main results are twofold. First, we give a fixed-point algorithm for computing the set of states from which a player can win with a deterministic observation-based strategy for a parity objective. Second, we give an algorithm for computing the set of states from which a player can win with probability 1 with a randomised observation-based strategy for a reachability objective. This set is of interest because in the absence of perfect information, randomised strategies are more powerful than deterministic ones.

Introduction

Games are natural models for reactive systems. We consider zero-sum two player turn-based games of infinite duration played on finite graphs. One player represents a control program, and the second player represents its environment. The graph describes the possible interactions of the system, and the game is of infinite duration because reactive systems are usually not expected to terminate. In the simplest setting, the game is turn-based and with perfect information, meaning that the players have full knowledge of both the game structure and the sequence of moves played by the adversary. The winning condition in a zero-sum graph game is defined by a set of plays that the first player aims to enforce, and that the second player aims to avoid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×